Multiplicity result for a class of elliptic equations with singular term

被引:0
作者
Chen, J. [1 ]
Murillo, K. [1 ]
Rocha, E. M. [1 ]
机构
[1] Univ Aveiro, Dept Math, P-3810193 Aveiro, Portugal
关键词
Variational methods; Inhomogeneous Laplacian equation; Singular term; Four solutions; Sign changing solution; EXISTENCE;
D O I
10.1016/j.na.2012.05.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the existence of nontrivial solutions of the equation -Delta u - lambda/vertical bar x vertical bar(2) u = vertical bar u vertical bar(2)*(-2)u + mu vertical bar x vertical bar(alpha-2)u + f (x)vertical bar u vertical bar(gamma), x is an element of Omega backslash {0}, u is an element of H-0(1)(Omega), where 0 is an element of Omega is a smooth bounded domain in R-N (N >= 3). By variational methods and Nehari set techniques, we show that this problem, under some additional hypotheses on lambda > 0, mu > 0, alpha > 0, 0 <= gamma < 1 and f is an element of L-infinity (Omega), has four nontrivial solutions in H-0(1) (Omega), and that least one of them is sign-changing. (c) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:5797 / 5814
页数:18
相关论文
共 16 条
[1]  
Catrina F, 2001, COMMUN PUR APPL MATH, V54, P229, DOI 10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO
[2]  
2-I
[3]   Existence of positive solutions of some semilinear elliptic equations with singular coefficients [J].
Chaudhuri, N ;
Ramaswamy, M .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2001, 131 :1275-1295
[4]   On a semilinear elliptic equation with singular term and Hardy-Sobolev critical growth [J].
Chen, Jianqing .
MATHEMATISCHE NACHRICHTEN, 2007, 280 (08) :838-850
[5]   Four solutions of an inhomogeneous elliptic equation with critical exponent and singular term [J].
Chen, Jianqing ;
Rocha, Eugenio M. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (10) :4739-4750
[6]   Multiple solutions for a semilinear equation involving singular potential and critical exponent [J].
Chen, JQ ;
Li, SJ ;
Li, YQ .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2005, 56 (03) :453-474
[7]  
Costa D.G., 1995, Differ. Integral Equ., V8, P673
[8]   Existence of solutions for singular critical growth semilinear elliptic equations [J].
Ferrero, A ;
Gazzola, F .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 177 (02) :494-522
[9]   INFINITELY MANY ARBITRARILY SMALL SOLUTIONS FOR SINGULAR ELLIPTIC PROBLEMS WITH CRITICAL SOBOLEV-HARDY EXPONENTS [J].
He, Xiaoming ;
Zou, Wenming .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2009, 52 :97-108
[10]   Multiple solutions for inhomogeneous elliptic problems involving critical Sobolev-Hardy exponents [J].
Kang, DS ;
Deng, YB .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 60 (04) :729-753