A facile route to synthesize multiporous MnCo2O4 and CoMn2O4 spinel quasi-hollow spheres with improved lithium storage properties

被引:462
作者
Li, Jingfa [1 ]
Xiong, Shenglin [1 ]
Li, Xiaowei [1 ]
Qian, Yitai [1 ,2 ,3 ]
机构
[1] Shandong Univ, Key Lab Colloid & Interface Chem, Minist Educ, Sch Chem & Chem Engn, Jinan 250100, Peoples R China
[2] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, Dept Chem, Hefei 230026, Anhui, Peoples R China
关键词
LI-ION BATTERIES; ANODE MATERIAL; HIGH-CAPACITY; MESOPOROUS CO3O4; PRECURSOR ROUTE; RATE CAPABILITY; ELECTRODES; MICROSPHERES; PERFORMANCE; ADSORPTION;
D O I
10.1039/c2nr33576j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A facile and general way for the synthesis of porous and hollow complex oxides is highly desirable owing to their significant applications for energy storage and other fields. In this contribution, uniform Mn0.33Co0.67CO3 and Co0.33Mn0.67CO3 microspheres are firstly fabricated solvothermally just by tuning the molar ratio of Mn and Co. Subsequently, the growth of multiporous MnCo2O4 and CoMn2O4 quasi-hollow microspheres by topotactic chemical transformation from the corresponding precursors are realized through a non-equilibrium heat treatment process. Topotactic conversion further demonstrated that the much larger CoMn2O4 pores than those of MnCo2O4 are possibly due to the longer transfer distance of ions. When evaluated as anode materials for LIBs (lithium ion batteries), after 25 cycles at a current density of 200 mA g(-1), the resultant MnCo2O4 and CoMn2O4 quasi-hollow microspheres possessed reversible capacities of 755 and 706 mA h g(-1), respectively. In particular, the MnCo2O4 samples could deliver a reversible capacity as high as 610 mA h g(-1) even at a higher current density of 400 mA g(-1) with excellent electrochemical stability after 100 cycles of testing, indicating its potential application in LIBs. We believe that such good performance results from the appropriate pore size and quasi-hollow nature of MnCo2O4 microspheres, which can effectively buffer the large volume variation of anodes based on the conversion reaction during Li+ insertion/extraction. The present strategy is simple but very effective, and due to its versatility, it can be extended to other binary, even ternary complex metal oxides with high-performance in LIBs.
引用
收藏
页码:2045 / 2054
页数:10
相关论文
共 59 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   Nanostructured Fe3O4/SWNT Electrode: Binder-Free and High-Rate Li-Ion Anode [J].
Ban, Chunmei ;
Wu, Zhuangchun ;
Gillaspie, Dane T. ;
Chen, Le ;
Yan, Yanfa ;
Blackburn, Jeffrey L. ;
Dillon, Anne C. .
ADVANCED MATERIALS, 2010, 22 (20) :E145-+
[3]   Porous LiMn2O4 nanorods with durable high-rate capability for rechargeable Li-ion batteries [J].
Cheng, Fangyi ;
Wang, Hongbo ;
Zhu, Zhiqiang ;
Wang, Yan ;
Zhang, Tianran ;
Tao, Zhanliang ;
Chen, Jun .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (09) :3668-3675
[4]   INTERPRETATION OF X-RAY PHOTOEMISSION SPECTRA OF COBALT OXIDES AND COBALT OXIDE SURFACES [J].
CHUANG, TJ ;
BRUNDLE, CR ;
RICE, DW .
SURFACE SCIENCE, 1976, 59 (02) :413-429
[5]   High capacity anode materials for Li-ion batteries based on spinel metal oxides AMn2O4 (A = Co, Ni, and Zn) [J].
Courtel, Fabrice M. ;
Duncan, Hugues ;
Abu-Lebdeh, Yaser ;
Davidson, Isobel J. .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (27) :10206-10218
[6]   Controllable synthesis of spinel nano-ZnMn2O4 via a single source precursor route and its high capacity retention as anode material for lithium ion batteries [J].
Deng, Yuanfu ;
Tang, Shidi ;
Zhang, Qiumei ;
Shi, Zhicong ;
Zhang, Leiting ;
Zhan, Shuzhong ;
Chen, Guohua .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (32) :11987-11995
[7]   Formation of SnO2 Hollow Nanospheres inside Mesoporous Silica Nanoreactors [J].
Ding, Shujiang ;
Chen, Jun Song ;
Qi, Genggeng ;
Duan, Xiaonan ;
Wang, Zhiyu ;
Giannelis, Emmanuel P. ;
Archer, Lynden A. ;
Lou, Xiong Wen .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (01) :21-23
[8]   Preparation of hollow spheres with controllable interior structures by heterogeneous contraction [J].
Guan, Jianguo ;
Mou, Fangzhi ;
Sun, Zhigang ;
Shi, Weidong .
CHEMICAL COMMUNICATIONS, 2010, 46 (35) :6605-6607
[9]   Lithium storage in hollow spherical ZnFe2O4 as anode materials for lithium ion batteries [J].
Guo, Xianwei ;
Lu, Xia ;
Fang, Xiangpeng ;
Mao, Ya ;
Wang, Zhaoxiang ;
Chen, Liquan ;
Xu, Xiaoxue ;
Yang, Hong ;
Liu, Yinong .
ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (06) :847-850
[10]   An Advanced Lithium Ion Battery Based on High Performance Electrode Materials [J].
Hassoun, Jusef ;
Lee, Ki-Soo ;
Sun, Yang-Kook ;
Scrosati, Bruno .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (09) :3139-3143