Understanding and tuning the quantum-confinement effect and edge magnetism in zigzag graphene nanoribbon

被引:41
作者
Huang, Liang Feng [1 ,2 ]
Zhang, Guo Ren [1 ,3 ]
Zheng, Xiao Hong [1 ]
Gong, Peng Lai [1 ]
Cao, Teng Fei [1 ]
Zeng, Zhi [1 ,4 ]
机构
[1] Chinese Acad Sci, Inst Solid State Phys, Key Lab Mat Phys, Hefei 230031, Peoples R China
[2] Max Planck Inst Eisenforsch GmbH, D-40237 Dusseldorf, Germany
[3] Forschungszentrum Julich, Peter Grunberg Inst, D-52428 Julich, Germany
[4] Univ Sci & Technol China, Dept Phys, Hefei 230026, Peoples R China
基金
美国国家科学基金会;
关键词
LAYER GRAPHENE; MAGNETORESISTANCE; LITHOGRAPHY; NANOSTRIPES; TRANSISTORS;
D O I
10.1088/0953-8984/25/5/055304
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The electronic structure of zigzag graphene nanoribbon (ZGNR) is studied using density functional theory. The mechanisms underlying the quantum-confinement effect and edge magnetism in ZGNR are systematically investigated by combining the simulated results and some useful analytic models. The quantum-confinement effect and the inter-edge superexchange interaction can be tuned by varying the ribbon width, and the spin polarization and direct exchange splitting of the edge states can be tuned by varying their electronic occupations. The two edges of ZGNR can be equally or unequally tuned by charge doping or Li adsorption, respectively. The Li adatom has a site-selective adsorption on ZGNR, and it is a nondestructive and memorable approach to effectively modify the edge states in ZGNR. These systematic understanding and effective tuning of ZGNR electronics presented in this work are helpful for further
引用
收藏
页数:8
相关论文
共 61 条
[1]   Graphene on metal surfaces and its hydrogen adsorption: A meta-GGA functional study [J].
Andersen, Mie ;
Hornekaer, Liv ;
Hammer, Bjork .
PHYSICAL REVIEW B, 2012, 86 (08)
[2]   Graphene/graphane interface energy and implications for defects [J].
Averill, Frank W. ;
Morris, James R. .
PHYSICAL REVIEW B, 2011, 84 (03)
[3]  
Bai JW, 2010, NAT NANOTECHNOL, V5, P655, DOI [10.1038/NNANO.2010.154, 10.1038/nnano.2010.154]
[4]   Nanoscale Lithography on Mono layer Graphene Using Hydrogenation and Oxidation [J].
Byun, Ik-Su ;
Yoon, Duhee ;
Choi, Jin Sik ;
Hwang, Inrok ;
Lee, Duk Hyun ;
Lee, Mi Jung ;
Kawai, Tomoji ;
Son, Young-Woo ;
Jia, Quanxi ;
Cheong, Hyeonsik ;
Park, Bae Ho .
ACS NANO, 2011, 5 (08) :6417-6424
[5]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[6]   Tuning the magnetic moments in zigzag graphene nanoribbons: Effects of metal substrates [J].
Chen, Jingzhe ;
Vanin, Marco ;
Hu, Yibin ;
Guo, Hong .
PHYSICAL REVIEW B, 2012, 86 (07)
[7]   Graphene nano-ribbon electronics [J].
Chen, Zhihong ;
Lin, Yu-Ming ;
Rooks, Michael J. ;
Avouris, Phaedon .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2007, 40 (02) :228-232
[8]   Stabilizing the Zigzag Edge: Graphene Nanoribbons with Sterically Constrained Terminations [J].
Chia, Cheng-Ing ;
Crespi, Vincent H. .
PHYSICAL REVIEW LETTERS, 2012, 109 (07)
[9]   Structural, magnetic, and transport properties of substitutionally doped graphene nanoribbons from first principles [J].
Cruz-Silva, E. ;
Barnett, Z. M. ;
Sumpter, B. G. ;
Meunier, V. .
PHYSICAL REVIEW B, 2011, 83 (15)
[10]   Dynamical Signatures of Edge-State Magnetism on Graphene Nanoribbons [J].
Feldner, Helene ;
Meng, Zi Yang ;
Lang, Thomas C. ;
Assaad, Fakher F. ;
Wessel, Stefan ;
Honecker, Andreas .
PHYSICAL REVIEW LETTERS, 2011, 106 (22)