Optimization of electrocoagulation process for removal of an azo dye using response surface methodology and investigation on the occurrence of destructive side reactions

被引:129
|
作者
Amani-Ghadim, A. R. [1 ,2 ]
Aber, S. [1 ]
Olad, A. [3 ]
Ashassi-Sorkhabi, H. [4 ]
机构
[1] Univ Tabriz, Fac Chem, Dept Appl Chem, Environm Protect Res Lab, Tabriz, Iran
[2] Azarbaijan Shahid Madani Univ, Fac Sci, Dept Chem, Tabriz, Iran
[3] Univ Tabriz, Fac Chem, Dept Appl Chem, Tabriz, Iran
[4] Univ Tabriz, Fac Chem, Electrochem Res Lab, Dept Phys Chem, Tabriz, Iran
关键词
Electrocoagulation; Azo dye; Central composite design; Optimization; GC-MS analysis; Electrochemical reduction; WASTE-WATER; ELECTROCHEMICAL METHODS; DECOLORIZATION; WASTEWATERS; PERSPECTIVES; COAGULATION; HYDROLYSIS; REDUCTION; DESIGN;
D O I
10.1016/j.cep.2012.10.012
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The optimization and modeling of the electrocoagulation process which conducted by means of iron (EC-Fe) and aluminum (EC-Al) anodes, in the removal of C.I. Reactive Red 43 were performed through the response surface methodology (RSM). Moreover, the occurrence of possible destructive reactions during both EC-Fe and EC-Al processes was investigated using UV-Vis spectrometry, total organic carbon (TOC) and GC-MS analyses. The electrocoagulation experiments were carried out in a monopolar batch reactor using two anodes and two cathodes in parallel connections. Current density, time, pH and chloride concentration were considered as input variables for RSM. The analysis of variance revealed a high coefficient of determination (R-EC-Fe(2) = 0.981 and R-EC-Al(2) = 0.934) between experimental removal efficiency and predicted one by RSM developed models. The optimum conditions proposed by RSM to reach the maximum RR43 removal through the EC-Fe were different from the ones proposed for the EC-Al. At the optimum conditions, the removal efficiency of dye was more than 99% for both processes, whereas 90.58% and 98.37% of initial TOC concentration decreased during EC-Fe and EC-Al processes, respectively. The analyses results confirmed that beside sweep flocculation mechanism, known as the main removal mechanism, the degradation of dye was occurred during EC-Fe as a minor pathway. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:68 / 78
页数:11
相关论文
共 50 条
  • [21] Electrocoagulation of Tannery Wastewater using Monopolar Electrodes: Process Optimization by Response Surface Methodology
    Varank, G.
    Erkan, H.
    Yazycy, S.
    Demir, A.
    Engin, G.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH, 2014, 8 (01) : 165 - 180
  • [22] Optimization and modelling using the response surface methodology (RSM) for ciprofloxacin removal by electrocoagulation
    Barisci, Sibel
    Turkay, Ozge
    WATER SCIENCE AND TECHNOLOGY, 2016, 73 (07) : 1673 - 1679
  • [23] Integrated ozone-electrocoagulation process for the removal of pollutant from industrial effluent: Optimization through response surface methodology
    Asaithambi, P.
    Aziz, Abdul Raman Abdul
    Daud, Wan Mohd Ashri Bin Wan
    CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2016, 105 : 92 - 102
  • [24] Optimization of Electrocoagulation Process for Thallium Removal from Aqueous Solutions by Response Surface Methodology
    Fu X.
    Zhang L.
    Li L.
    Yang G.
    1600, Editorial Office of Chinese Journal of Rare Metals (44): : 530 - 539
  • [25] Photocatalytic degradation of azo pyridone dye: Optimization using response surface methodology
    Dostanic, Jasmina
    Loncarevic, Davor
    Rozic, Ljiljana
    Petrovic, Srdan
    Mijin, Dusan
    Jovanovic, Dusan M.
    DESALINATION AND WATER TREATMENT, 2013, 51 (13-15) : 2802 - 2812
  • [26] Copper (II) removal in a column reactor using electrocoagulation: Parametric optimization by response surface methodology using central composite design
    Mateen, Qazi Shabihul
    Khan, Saif Ullah
    Islam, Dar Tafazul
    Khan, Nadeem Ahmad
    Farooqi, Izharul Haq
    WATER ENVIRONMENT RESEARCH, 2020, 92 (09) : 1350 - 1362
  • [27] Response Methodology Optimization and Artificial Neural Network Modeling for the Removal of Sulfamethoxazole Using an Ozone-Electrocoagulation Hybrid Process
    Nghia, Nguyen Trong
    Tuyen, Bui Thi Kim
    Quynh, Ngo Thi
    Thuy, Nguyen Thi Thu
    Nguyen, Thi Nguyet
    Nguyen, Vinh Dinh
    Tran, Thi Kim Ngan
    MOLECULES, 2023, 28 (13):
  • [28] Investigation and optimisation of turbidity and organic matter removal from surface water by electrocoagulation using response surface methodology
    Bessioud, Slimane
    Affoune, Abed Mohamed
    Chelaghmia, Mohamed Lyamine
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL TECHNOLOGY AND MANAGEMENT, 2023, 26 (3-5) : 360 - 381
  • [29] Wastewater treatment using sono-electrocoagulation process: optimization through response surface methodology
    Arka, Andualem
    Dawit, Cherinet
    Befekadu, Adisu
    Debela, Seifu Kebede
    Asaithambi, Perumal
    SUSTAINABLE WATER RESOURCES MANAGEMENT, 2022, 8 (03)
  • [30] Electrocoagulation removal of Cr(VI) from simulated wastewater using response surface methodology
    Bhatti, Manpreet S.
    Reddy, Akepati S.
    Thukral, Ashwani K.
    JOURNAL OF HAZARDOUS MATERIALS, 2009, 172 (2-3) : 839 - 846