Fabrication and practical applications of molybdenum disulfide nanopores

被引:103
作者
Graf, Michael [1 ]
Lihter, Martina [1 ]
Thakur, Mukeshchand [1 ]
Georgiou, Sileia [2 ,3 ,4 ]
Topolancik, Juraj [2 ,5 ]
Ilic, B. Robert [5 ]
Liu, Ke [1 ]
Feng, Jiandong [6 ]
Astier, Yann [2 ]
Radenovic, Aleksandra [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Lab Nanoscale Biol, Inst Bioengn, Sch Engn, Lausanne, Switzerland
[2] Roche Sequencing Solut, Pleasanton, CA USA
[3] Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA
[4] Univ Maryland, Maryland NanoCtr, College Pk, MD 20742 USA
[5] NIST, Ctr Nanoscale Sci & Technol, Gaithersburg, MD 20899 USA
[6] Zhejiang Univ, Lab Expt Phys Biol, Dept Chem, Hangzhou, Zhejiang, Peoples R China
基金
瑞士国家科学基金会;
关键词
SOLID-STATE NANOPORES; 2-DIMENSIONAL MATERIALS; DNA TRANSLOCATION; ACCESS RESISTANCE; MONO LAYER; SINGLE; GRAPHENE; NOISE; CHALLENGES; DEPOSITION;
D O I
10.1038/s41596-019-0131-0
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Among the different developed solid-state nanopores, nanopores constructed in a monolayer of molybdenum disulfide (MoS2) stand out as powerful devices for single-molecule analysis or osmotic power generation. Because the ionic current through a nanopore is inversely proportional to the thickness of the pore, ultrathin membranes have the advantage of providing relatively high ionic currents at very small pore sizes. This increases the signal generated during translocation of biomolecules and improves the nanopores' efficiency when used for desalination or reverse electrodialysis applications. The atomic thickness of MoS2 nanopores approaches the inter-base distance of DNA, creating a potential candidate for DNA sequencing. In terms of geometry, MoS2 nanopores have a well-defined vertical profile due to their atomic thickness, which eliminates any unwanted effects associated with uneven pore profiles observed in other materials. This protocol details all the necessary procedures for the fabrication of solid-state devices. We discuss different methods for transfer of monolayer MoS2, different approaches for the creation of nanopores, their applicability in detecting DNA translocations and the analysis of translocation data through open-source programming packages. We present anticipated results through the application of our nanopores in DNA translocations and osmotic power generation. The procedure comprises four parts: fabrication of devices (2-3 d), transfer of MoS2 and cleaning procedure (24 h), the creation of nanopores within MoS2 (30 min) and performing DNA translocations (2-3 h). We anticipate that our protocol will enable large-scale manufacturing of single-molecule-analysis devices as well as next-generation DNA sequencing.
引用
收藏
页码:1130 / 1168
页数:39
相关论文
共 86 条
[1]   Single molecule detection with graphene and other two-dimensional materials: nanopores and beyond [J].
Arjmandi-Tash, Hadi ;
Belyaeva, Liubov A. ;
Schneider, Gregory F. .
CHEMICAL SOCIETY REVIEWS, 2016, 45 (03) :476-493
[2]   Suspended Solid-state Membranes on Glass Chips with Sub 1-pF Capacitance for Biomolecule Sensing Applications [J].
Balan, Adrian ;
Chien, Chen-Chi ;
Engelke, Rebecca ;
Drndic, Marija .
SCIENTIFIC REPORTS, 2015, 5
[3]   Improving Signal-to-Noise Performance for DNA Trans location in Solid-State Nanopores at MHz Bandwidths [J].
Balan, Adrian ;
Machielse, Bartholomeus ;
Niedzwiecki, David ;
Lin, Jianxun ;
Ong, Peijie ;
Engelke, Rebecca ;
Shepard, Kenneth L. ;
Drndic, Marija .
NANO LETTERS, 2014, 14 (12) :7215-7220
[4]   Visibility of dichalcogenide nanolayers [J].
Benameur, M. M. ;
Radisavljevic, B. ;
Heron, J. S. ;
Sahoo, S. ;
Berger, H. ;
Kis, A. .
NANOTECHNOLOGY, 2011, 22 (12)
[5]   The potential and challenges of nanopore sequencing [J].
Branton, Daniel ;
Deamer, David W. ;
Marziali, Andre ;
Bayley, Hagan ;
Benner, Steven A. ;
Butler, Thomas ;
Di Ventra, Massimiliano ;
Garaj, Slaven ;
Hibbs, Andrew ;
Huang, Xiaohua ;
Jovanovich, Stevan B. ;
Krstic, Predrag S. ;
Lindsay, Stuart ;
Ling, Xinsheng Sean ;
Mastrangelo, Carlos H. ;
Meller, Amit ;
Oliver, John S. ;
Pershin, Yuriy V. ;
Ramsey, J. Michael ;
Riehn, Robert ;
Soni, Gautam V. ;
Tabard-Cossa, Vincent ;
Wanunu, Meni ;
Wiggin, Matthew ;
Schloss, Jeffery A. .
NATURE BIOTECHNOLOGY, 2008, 26 (10) :1146-1153
[6]   Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene [J].
Butler, Sheneve Z. ;
Hollen, Shawna M. ;
Cao, Linyou ;
Cui, Yi ;
Gupta, Jay A. ;
Gutierrez, Humberto R. ;
Heinz, Tony F. ;
Hong, Seung Sae ;
Huang, Jiaxing ;
Ismach, Ariel F. ;
Johnston-Halperin, Ezekiel ;
Kuno, Masaru ;
Plashnitsa, Vladimir V. ;
Robinson, Richard D. ;
Ruoff, Rodney S. ;
Salahuddin, Sayeef ;
Shan, Jie ;
Shi, Li ;
Spencer, Michael G. ;
Terrones, Mauricio ;
Windl, Wolfgang ;
Goldberger, Joshua E. .
ACS NANO, 2013, 7 (04) :2898-2926
[7]   Interpreting the Conductance Blockades of DNA Translocations through Solid-State Nanopores [J].
Carlsen, Autumn T. ;
Zahid, Osama K. ;
Ruzicka, Jan ;
Taylor, Ethan W. ;
Hall, Adam R. .
ACS NANO, 2014, 8 (05) :4754-4760
[8]   Challenges in DNA motion control and sequence readout using nanopore devices [J].
Carson, Spencer ;
Wanunu, Meni .
NANOTECHNOLOGY, 2015, 26 (07)
[9]   Isolation and characterization of few-layer black phosphorus [J].
Castellanos-Gomez, Andres ;
Vicarelli, Leonardo ;
Prada, Elsa ;
Island, Joshua O. ;
Narasimha-Acharya, K. L. ;
Blanter, Sofya I. ;
Groenendijk, Dirk J. ;
Buscema, Michele ;
Steele, Gary A. ;
Alvarez, J. V. ;
Zandbergen, Henny W. ;
Palacios, J. J. ;
van der Zant, Herre S. J. .
2D MATERIALS, 2014, 1 (02)
[10]  
Coulter W. H, 1953, United States Patent, Patent No. 2656508