Normalized solutions to fractional mass supercritical NLS systems with Sobolev critical nonlinearities

被引:12
作者
Zuo, Jiabin [1 ,2 ]
Radulescu, Vicentiu D. [3 ,4 ,5 ]
机构
[1] Changchun Normal Univ, Coll Math, Changchun 130032, Peoples R China
[2] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
[3] AGH Univ Sci & Technol, Fac Appl Math, PL-30059 Krakow, Poland
[4] Romanian Acad, Inst Math, Calea Grivitei 21, Bucharest 010702, Romania
[5] Univ Craiova, Dept Math, Craiova 200585, Romania
关键词
Normalized solution; Mass supercritical; Fractional double Sobolev critical; Schrodinger coupled system; SCHRODINGER-EQUATIONS; EXISTENCE; SYMMETRY;
D O I
10.1007/s13324-022-00753-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the following fractional Sobolev critical Nonlinear Schrodinger coupled systems: {(-Delta)(s) u = mu(1)u + vertical bar u vertical bar(2s)*(-2)u + eta(1)vertical bar u vertical bar(p-2) u + gamma alpha vertical bar u vertical bar(alpha-2)u vertical bar v vertical bar(beta) in R-N, (-Delta)(s) v = mu(2)v + vertical bar v vertical bar(2s)*(-2)v + eta(2)vertical bar v vertical bar(q-2)v + gamma beta vertical bar v vertical bar(alpha)vertical bar v vertical bar(beta-)(2)v in R-N, parallel to u parallel to(2)(L2) = m(1)(2) and parallel to v parallel to(2)(L2) = m(2)(2), where (-Delta)(s) is the fractional Laplacian, N > 2s, s is an element of (0, 1), mu(1), mu(2) is an element of R are unknown constants, which will appear as Lagrange multipliers, 2(s)* is the fractional Sobolev critical index, eta(1), eta(2), gamma, m(1), m(2) > 0, alpha > 1, beta > 1, p, q, alpha + beta is an element of (2 + 4s/N, 2(s)*]. Firstly, if p, q, alpha + beta < 2(s)*, we obtain the existence of positive normalized solution when gamma is big enough. Secondly, if p= q = alpha + beta = 2(s)*, we show that nonexistence of positive normalized solution. The main ideas and methods of this paper are scaling transformation, classification discussion and concentration-compactness principle.
引用
收藏
页数:20
相关论文
共 38 条
[1]   Normalized solutions for the fractional NLS with mass supercritical nonlinearity [J].
Appolloni, Luigi ;
Secchi, Simone .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 286 :248-283
[2]  
Bagnato VS, 2015, ROM REP PHYS, V67, P5
[3]   Multiple normalized solutions for a competing system of Schrodinger equations [J].
Bartsch, Thomas ;
Soave, Nicola .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (01)
[4]   Normalized solutions for nonlinear Schrodinger systems [J].
Bartsch, Thomas ;
Jeanjean, Louis .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2018, 148 (02) :225-242
[5]   A natural constraint approach to normalized solutions of nonlinear Schrodinger equations and systems [J].
Bartsch, Thomas ;
Soave, Nicola .
JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (12) :4998-5037
[6]   Normalized solutions for a system of coupled cubic Schrodinger equations on R3 [J].
Bartsch, Thomas ;
Jeanjean, Louis ;
Soave, Nicola .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2016, 106 (04) :583-614
[7]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490
[8]   Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity [J].
Chang, X. ;
Wang, Z-Q .
NONLINEARITY, 2013, 26 (02) :479-494
[9]   Normalized Solutions of Nonautonomous Kirchhoff Equations: Sub- and Super-critical Cases [J].
Chen, Sitong ;
Radulescu, Vicentiu D. ;
Tang, Xianhua .
APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 84 (01) :773-806
[10]  
Chen ZJ, 2015, T AM MATH SOC, V367, P3599