Prediction of spontaneous imbibition in porous media using deep and ensemble learning techniques

被引:16
|
作者
Mahdaviara, Mehdi [1 ]
Sharifi, Mohammad [1 ]
Bakhshian, Sahar [2 ]
Shokri, Nima [3 ]
机构
[1] Amirkabir Univ Technol, Dept Petr Engn, Tehran Polytech, Tehran, Iran
[2] Univ Texas Austin, Jackson Sch Geosci, Bur Econ Geol, Austin, TX 78758 USA
[3] Hamburg Univ Technol, Inst Geohydroinformat, D-21073 Hamburg, Germany
关键词
Spontaneous imbibition; Deep learning; Machine learning; Ensemble learning; Flow in porous media; FLOW;
D O I
10.1016/j.fuel.2022.125349
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Spontaneous imbibition (SI), which is a process of displacing a nonwetting fluid by a wetting fluid in porous media, is of critical importance to hydrocarbon recovery from fractured reservoirs. In the present study, we utilize deep and ensemble learning techniques to predict SI recovery in porous media under different boundary conditions including All-Faces-Open (AFO), One-End-Open (OEO), Two-Ends-Open (TEO), and Two-Ends-Closed (TEC). An extensive experimental dataset reported in literature representing a multiplicity of non-wetting fluid recovery-time curves was used in our analysis. The prepared dataset was used to learn diverse ensemble and deep learning algorithms of Random Forest (RF), Gradient Boosting Machine (GBM), Extreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), Voting Regressor (VR), Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU). The training procedure provided us with robust models linking the SI recovery to the absolute permeability (k), porosity (phi), characteristic length (Lc), interfacial tension (sigma), wetting-phase viscosity (mu w), non-wetting-phase viscosity (mu nw), and imbibition time (t). To evaluate and validate the models' prediction, we used two well-established approaches: (i) 10-fold cross -validation and (ii) predicting the SI behavior of a set of unseen data excluded from the model training. Our results illustrate an excellent performance of deep and ensemble learning techniques for prediction of SI with the test RMSE values of 4.642, 4.088, 4.524, 3.933, 3.875, 3.975, 4.513, and 4.807 percent for RF, GBM, XGBoost, LightGBM, VR, CNN, LSTM, and GRU models, respectively. The models have significant benefits in terms of accuracy and generality. Furthermore, they alleviate the sophistications associated with tuning the traditional correlation functions. The findings of this study can pave the road toward a more comprehensive characterization of fluid flow in porous materials which is important to a wide range of environmental and energy-related challenges such as contaminant transport, soil remediation, and enhanced oil recovery.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Performance prediction of roadheaders using ensemble machine learning techniques
    Seker, Sadi Evren
    Ocak, Ibrahim
    NEURAL COMPUTING & APPLICATIONS, 2019, 31 (04) : 1103 - 1116
  • [42] Modeling the spontaneous imbibition of non-Newtonian fluids into the fractal porous media of tight reservoirs
    Zhu, Yunxuan
    Li, Zhiping
    Ni, Jun
    Lai, Fengpeng
    Wu, Dan
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2022, 209
  • [43] An ensemble learning approach for diabetes prediction using boosting techniques
    Ganie, Shahid Mohammad
    Pramanik, Pijush Kanti Dutta
    Malik, Majid Bashir
    Mallik, Saurav
    Qin, Hong
    FRONTIERS IN GENETICS, 2023, 14
  • [44] Performance prediction of roadheaders using ensemble machine learning techniques
    Sadi Evren Seker
    Ibrahim Ocak
    Neural Computing and Applications, 2019, 31 : 1103 - 1116
  • [45] Business intelligence using deep learning techniques for social media contents
    Tarek Kanan
    Ala Mughaid
    Riyad Al-Shalabi
    Mahmoud Al-Ayyoub
    Mohammed Elbes
    Odai Sadaqa
    Cluster Computing, 2023, 26 : 1285 - 1296
  • [46] Business intelligence using deep learning techniques for social media contents
    Kanan, Tarek
    Mughaid, Ala
    Al-Shalabi, Riyad
    Al-Ayyoub, Mahmoud
    Elbes, Mohammed
    Sadaqa, Odai
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2023, 26 (02): : 1285 - 1296
  • [47] Crop Yield Prediction Using Ensemble Machine Learning Techniques
    P. Kuppan
    V. Vishwa Priya
    SN Computer Science, 5 (8)
  • [48] Prediction of Prostate Cancer using Ensemble of Machine Learning Techniques
    Oyewo, O. A.
    Boyinbode, O. K.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2020, 11 (03) : 149 - 154
  • [49] Identifying High Risk of Atherosclerosis Using Deep Learning and Ensemble Learning
    Olhosseiny, Hedieh Hashem
    Mirzaloo, Mohammadsalar
    Bolic, Miodrag
    Dajani, Hilmi R.
    Groza, Voicu
    Yoshida, Masayoshi
    2021 IEEE INTERNATIONAL SYMPOSIUM ON MEDICAL MEASUREMENTS AND APPLICATIONS (IEEE MEMEA 2021), 2021,
  • [50] Evaluating porous media wettability from changes in Helmholtz free energy using spontaneous imbibition profiles
    Alinejad, Amin
    Dehghanpour, Hassan
    ADVANCES IN WATER RESOURCES, 2021, 157