Prediction of spontaneous imbibition in porous media using deep and ensemble learning techniques

被引:16
|
作者
Mahdaviara, Mehdi [1 ]
Sharifi, Mohammad [1 ]
Bakhshian, Sahar [2 ]
Shokri, Nima [3 ]
机构
[1] Amirkabir Univ Technol, Dept Petr Engn, Tehran Polytech, Tehran, Iran
[2] Univ Texas Austin, Jackson Sch Geosci, Bur Econ Geol, Austin, TX 78758 USA
[3] Hamburg Univ Technol, Inst Geohydroinformat, D-21073 Hamburg, Germany
关键词
Spontaneous imbibition; Deep learning; Machine learning; Ensemble learning; Flow in porous media; FLOW;
D O I
10.1016/j.fuel.2022.125349
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Spontaneous imbibition (SI), which is a process of displacing a nonwetting fluid by a wetting fluid in porous media, is of critical importance to hydrocarbon recovery from fractured reservoirs. In the present study, we utilize deep and ensemble learning techniques to predict SI recovery in porous media under different boundary conditions including All-Faces-Open (AFO), One-End-Open (OEO), Two-Ends-Open (TEO), and Two-Ends-Closed (TEC). An extensive experimental dataset reported in literature representing a multiplicity of non-wetting fluid recovery-time curves was used in our analysis. The prepared dataset was used to learn diverse ensemble and deep learning algorithms of Random Forest (RF), Gradient Boosting Machine (GBM), Extreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), Voting Regressor (VR), Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU). The training procedure provided us with robust models linking the SI recovery to the absolute permeability (k), porosity (phi), characteristic length (Lc), interfacial tension (sigma), wetting-phase viscosity (mu w), non-wetting-phase viscosity (mu nw), and imbibition time (t). To evaluate and validate the models' prediction, we used two well-established approaches: (i) 10-fold cross -validation and (ii) predicting the SI behavior of a set of unseen data excluded from the model training. Our results illustrate an excellent performance of deep and ensemble learning techniques for prediction of SI with the test RMSE values of 4.642, 4.088, 4.524, 3.933, 3.875, 3.975, 4.513, and 4.807 percent for RF, GBM, XGBoost, LightGBM, VR, CNN, LSTM, and GRU models, respectively. The models have significant benefits in terms of accuracy and generality. Furthermore, they alleviate the sophistications associated with tuning the traditional correlation functions. The findings of this study can pave the road toward a more comprehensive characterization of fluid flow in porous materials which is important to a wide range of environmental and energy-related challenges such as contaminant transport, soil remediation, and enhanced oil recovery.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Contact Angle Determined by Spontaneous Imbibition in Porous Media: Experiment and Theory
    Li, Guangyu
    Chen, Xiaoqian
    Huang, Yiyong
    JOURNAL OF DISPERSION SCIENCE AND TECHNOLOGY, 2015, 36 (06) : 772 - 777
  • [32] Stock Market Index Prediction Using Machine Learning and Deep Learning Techniques
    Saboor, Abdus
    Hussain, Arif
    Agbley, Bless Lord Y.
    ul Haq, Amin
    Li, Jian Ping
    Kumar, Rajesh
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2023, 37 (02) : 1325 - 1344
  • [33] Mathematical model of the spontaneous imbibition of water into oil-saturated fractured porous media with gravity
    Cheng, Hui
    Wang, Fuyong
    CHEMICAL ENGINEERING SCIENCE, 2021, 231
  • [34] Sentiment analysis using a deep ensemble learning model
    Muhammet Sinan Başarslan
    Fatih Kayaalp
    Multimedia Tools and Applications, 2024, 83 : 42207 - 42231
  • [35] Sentiment analysis using a deep ensemble learning model
    Basarslan, Muhammet Sinan
    Kayaalp, Fatih
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (14) : 42207 - 42231
  • [36] Brain Tumor Classification Using an Ensemble of Deep Learning Techniques
    Patro, S. Gopal Krishna
    Govil, Nikhil
    Saxena, Surabhi
    Kishore Mishra, Brojo
    Taha Zamani, Abu
    Ben Miled, Achraf
    Parveen, Nikhat
    Elshafie, Hashim
    Hamdan, Mosab
    IEEE ACCESS, 2024, 12 : 162094 - 162106
  • [37] Ensemble Learning Based on Hybrid Deep Learning Model for Heart Disease Early Prediction
    Almulihi, Ahmed
    Saleh, Hager
    Hussien, Ali Mohamed
    Mostafa, Sherif
    El-Sappagh, Shaker
    Alnowaiser, Khaled
    Ali, Abdelmgeid A.
    Refaat Hassan, Moatamad
    DIAGNOSTICS, 2022, 12 (12)
  • [38] Preferential Solute Transport in Low Permeability Zones During Spontaneous Imbibition in Heterogeneous Porous Media
    Zahasky, Christopher
    Benson, Sally M.
    WATER RESOURCES RESEARCH, 2022, 58 (01)
  • [39] Employee Attrition Prediction using Nested Ensemble Learning Techniques
    Alshiddy, Muneera Saad
    Aljaber, Bader Nasser
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (07) : 932 - 938
  • [40] De novo Prediction of Moonlighting Proteins Using Multimodal Deep Ensemble Learning
    Li, Ying
    Zhao, Jianing
    Liu, Zhaoqian
    Wang, Cankun
    Wei, Lizheng
    Han, Siyu
    Du, Wei
    FRONTIERS IN GENETICS, 2021, 12