DIVISIBILITY GRAPH FOR SYMMETRIC AND ALTERNATING GROUPS

被引:4
作者
Abdolghafourian, Adeleh [1 ]
Iranmanesh, Mohammad A. [1 ]
机构
[1] Yazd Univ, Dept Math, Yazd 89195741, Iran
关键词
Alternating group; Connected component; Diameter; Divisibility graph; Symmetric group; FINITE-GROUPS;
D O I
10.1080/00927872.2014.907411
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a nonempty set of positive integers and X* = X\{1}. The divisibility graph D(X) has X* as the vertex set, and there is an edge connecting a and b with a, b is an element of X* whenever a divides b or b divides a. Let X = cs(G) be the set of conjugacy class sizes of a group G. In this case, we denote D(cs(G)) by D(G). In this paper, we will find the number of connected components of D(G) where G is the symmetric group S-n or is the alternating group A(n).
引用
收藏
页码:2852 / 2862
页数:11
相关论文
共 14 条
[1]   Noncyclic graph of a group [J].
Abdollahi, A. ;
Hassanabadi, A. Mohammadi .
COMMUNICATIONS IN ALGEBRA, 2007, 35 (07) :2057-2081
[2]   ON A GRAPH RELATED TO CONJUGACY CLASSES OF GROUPS [J].
BERTRAM, EA ;
HERZOG, M ;
MANN, A .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1990, 22 :569-575
[3]   On bipartite divisor graphs for group conjugacy class sizes [J].
Bubboloni, Daniela ;
Dolfi, Silvio ;
Iranmanesh, Mohammad A. ;
Praeger, Cheryl E. .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2009, 213 (09) :1722-1734
[4]  
Cameron P.J., 1994, Combinatorics: Topics, Techniques, Algorithms
[5]   The power graph of a finite group [J].
Cameron, Peter J. ;
Ghosh, Shamik .
DISCRETE MATHEMATICS, 2011, 311 (13) :1220-1222
[6]  
Camina A., 2011, An introduction to enumeration
[7]  
Camina A.R., 2011, ASIAN EUR J MATH, V04, P559
[8]   The diameter of a conjugacy class graph of finite groups [J].
Casolo, C ;
Dolfi, S .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1996, 28 :141-148
[9]  
Dummit D. S, 2004, Abstract Algebra, Vthird
[10]   Bipartite Divisor Graphs for Integer Subsets [J].
Iranmanesh, Mohammad A. ;
Praeger, Cheryl E. .
GRAPHS AND COMBINATORICS, 2010, 26 (01) :95-105