A Characterization of Toric Varieties in Characteristic p

被引:8
作者
Achinger, Piotr [1 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
关键词
RINGS;
D O I
10.1093/imrn/rnu151
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If X is a smooth toric variety over an algebraically closed field of positive characteristic and L is an invertible sheaf on X, it has been shown by Thomsen that the push-forward of L along the Frobenius morphism of X splits into a direct sum of invertible sheaves. We show that this property characterizes smooth projective toric varieties.
引用
收藏
页码:6879 / 6892
页数:14
相关论文
共 18 条
[1]   FROBENIUS PUSH-FORWARDS ON QUADRICS [J].
Achinger, Piotr .
COMMUNICATIONS IN ALGEBRA, 2012, 40 (08) :2732-2748
[2]   On the local quotient structure of Artin stacks [J].
Alper, Jarod .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2010, 214 (09) :1576-1591
[3]  
[Anonymous], 1977, Graduate Texts in Mathematics
[4]  
[Anonymous], 1977, Lecture Notes in Mathematics, V589
[5]  
Atiyah M. F., 1956, Bull. Soc. Math. France, V84, P307
[6]   Cox rings and combinatorics [J].
Berchtold, Florian ;
Hausen, Jurgen .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (03) :1205-1252
[7]   Splitting of the direct image of sheaves under the Frobenius [J].
Bogvad, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (12) :3447-3454
[8]   On the conjecture of King for smooth toric Deligne-Mumford stacks [J].
Borisov, Lev ;
Hua, Zheng .
ADVANCES IN MATHEMATICS, 2009, 221 (01) :277-301
[9]  
Brion M., 2005, PROGR MATH, V231
[10]  
Cox D. A., 2011, GRADUATE STUDIES MAT, V124