A quantum access network

被引:261
作者
Froehlich, Bernd [1 ,2 ]
Dynes, James F. [1 ,2 ]
Lucamarini, Marco [1 ,2 ]
Sharpe, Andrew W. [1 ]
Yuan, Zhiliang [1 ,2 ]
Shields, Andrew J. [1 ,2 ]
机构
[1] Toshiba Res Europe Ltd, Cambridge CB4 0GZ, England
[2] Toshiba Co Ltd, Corp Res & Dev Ctr, Saiwai Ku, Kawasaki, Kanagawa 2128582, Japan
关键词
KEY DISTRIBUTION; FIELD-TEST; COMMUNICATION;
D O I
10.1038/nature12493
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The theoretically proven security of quantum key distribution(QKD) could revolutionize the way in which information exchange is protected in the future(1,2). Several field tests of QKD have proven it to be a reliable technology for cryptographic key exchange and have demonstrated nodal networks of point-to-point links(3-5). However, until now no convincing answer has been given to the question of how to extend the scope of QKD beyond niche applications in dedicated high security networks. Here we introduce and experimentally demonstrate the concept of a 'quantum access network': based on simple and cost-effective telecommunication technologies, the scheme can greatly expand the number of users in quantum networks and therefore vastly broaden their appeal. We show that a high-speed single-photon detector positioned at a network node can be shared between up to 64 users for exchanging secret keys with the node, thereby significantly reducing the hardware requirements for each user added to the network. This point-to-multipoint architecture removes one of the main obstacles restricting the widespread application of QKD. It presents a viable method for realizing multi-user QKD networks with efficient use of resources, and brings QKD closer to becoming a widespread technology.
引用
收藏
页码:69 / +
页数:5
相关论文
共 30 条
[1]  
Barnett S., 2011, GCC C EXH GCC 2011 I, P143
[2]   Finite-key analysis for practical implementations of quantum key distribution [J].
Cai, Raymond Y. Q. ;
Scarani, Valerio .
NEW JOURNAL OF PHYSICS, 2009, 11
[3]   Optical networking for quantum key distribution and quantum communications [J].
Chapuran, T. E. ;
Toliver, P. ;
Peters, N. A. ;
Jackel, J. ;
Goodman, M. S. ;
Runser, R. J. ;
McNown, S. R. ;
Dallmann, N. ;
Hughes, R. J. ;
McCabe, K. P. ;
Nordholt, J. E. ;
Peterson, C. G. ;
Tyagi, K. T. ;
Mercer, L. ;
Dardy, H. .
NEW JOURNAL OF PHYSICS, 2009, 11
[4]   Metropolitan all-pass and inter-city quantum communication network [J].
Chen, Teng-Yun ;
Wang, Jian ;
Liang, Hao ;
Liu, Wei-Yue ;
Liu, Yang ;
Jiang, Xiao ;
Wang, Yuan ;
Wan, Xu ;
Cai, Wen-Qi ;
Ju, Lei ;
Chen, Luo-Kan ;
Wang, Liu-Jun ;
Gao, Yuan ;
Chen, Kai ;
Peng, Cheng-Zhi ;
Chen, Zeng-Bing ;
Pan, Jian-Wei .
OPTICS EXPRESS, 2010, 18 (26) :27217-27225
[5]   Continuous operation of high bit rate quantum key distribution [J].
Dixon, A. R. ;
Yuan, Z. L. ;
Dynes, J. F. ;
Sharpe, A. W. ;
Shields, A. J. .
APPLIED PHYSICS LETTERS, 2010, 96 (16)
[6]   Current status of the DARPA quantum network [J].
Elliott, C ;
Colvin, A ;
Pearson, D ;
Pikalo, O ;
Schlafer, J ;
Yeh, H .
QUANTUM INFORMATION AND COMPUTATION III, 2005, 5815 :138-149
[7]   Upper bounds of eavesdropper's performances in finite-length code with the decoy method [J].
Hayashi, Masahito .
PHYSICAL REVIEW A, 2007, 76 (01)
[8]  
Hughes R. J., 2013, NETWORK CTR QUANTUM
[9]   Quantum key distribution with high loss: Toward global secure communication [J].
Hwang, WY .
PHYSICAL REVIEW LETTERS, 2003, 91 (05) :579011-579014
[10]  
International Telecommunication Union, 2008, G9841 INT TEL UN