Attention based residual network for medicinal fungi near infrared spectroscopy analysis

被引:13
作者
Huang, Lan [1 ,2 ]
Guo, Shuyu [1 ,2 ]
Wang, Ye [1 ,2 ]
Wang, Shang [1 ,2 ]
Chu, Qiubo [3 ]
Li, Lu [4 ]
Bai, Tian [1 ,2 ]
机构
[1] Jilin Univ, Collage Comp Sci & Technol, Changchun 130012, Jilin, Peoples R China
[2] Jilin Univ, Minist Educ, Key Lab Symbol Computat & Knowledge Engn, Changchun 130012, Jilin, Peoples R China
[3] Jilin Univ, Collage Life Sci, Changchun 130012, Jilin, Peoples R China
[4] Tongji Univ, Collage Software Engn, Shanghai 201804, Peoples R China
基金
中国国家自然科学基金;
关键词
near infrared spectroscopy; medicinal fungi; residual network; attention mechanism; deep learning; SUCCESSIVE PROJECTIONS ALGORITHM; FUNCTION NEURAL-NETWORK; VARIABLE SELECTION; NIRS; PLS;
D O I
10.3934/mbe.2019149
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
As an effective technology, near infrared spectroscopy (NIRS) can be widely applied to analysis of active ingredients in medicinal fungi. Multiple regression methods are used to compute the relationship between spectral vectors and ingredient contents. In this paper, an autonomous feature extraction method by using attention based residual network (ABRN) to model original NIRS vectors is introduced. Attention module in ABRN is employed to enhance feature wave bands and to decay noise. Different from traditional NIRS analysis methods, ABRN does not require any preprocessing of artificial feature selections which rely on expert experience. The experiments test ABRN by analyzing original spectrums of medicinal fungi (Antrodia Camphorata and Matsutake), which are from 800 nm to 2500 nm, and predicting active ingredients within them. We compare ABRN with other popular NIRS analysis methods. The root mean square error of Antrodia Camphorata training set (RMSET) and validation set (RMSEV) are 0.0229 g.g(-1) and 0.0349 g.g(-1) for polysaccharide, and 0.0173 g.g(-1) and 0.0189 g.g(-1) for triterpene. The RMSET and RMSEV of Matsutake are 0.1343 g.g(-1) and 0.2472 g.g(-1) for polysaccharide, and 0.0328 g.g(-1) and 0.0445 g.g(-1) for ergosterol. The R-2 (coefficient of determination) of these four ingredients are 0.711, 0.753, 0.847 and 0.807. The results indicate that ABRN has better performance in autonomously extracting feature wave bands from original NIRS vectors, which can decrease the loss of tiny feature peaks.
引用
收藏
页码:3003 / 3017
页数:15
相关论文
共 37 条
[1]   The successive projections algorithm for variable selection in spectroscopic multicomponent analysis [J].
Araújo, MCU ;
Saldanha, TCB ;
Galvao, RKH ;
Yoneyama, T ;
Chame, HC ;
Visani, V .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2001, 57 (02) :65-73
[2]  
Bai T., 2019, CHIN J ELECT
[3]  
Bai T., 2018, CONCURR COMPUT PRACT
[4]   A method for exploring implicit concept relatedness in biomedical knowledge network [J].
Bai, Tian ;
Gong, Leiguang ;
Wang, Ye ;
Wang, Yan ;
Kulikowski, Casimir A. ;
Huang, Lan .
BMC BIOINFORMATICS, 2016, 17
[5]  
Bai T, 2012, CHINESE J ELECTRON, V21, P460
[6]  
Bjerrum E. J., 2017, ARXIV LEARNING
[7]   Prediction of meat quality traits in Nelore cattle by near-infrared reflectance spectroscopy [J].
Braga Magalhaes, Ana Fabricia ;
de Almeida Teixeira, Gustavo Henrique ;
Herrera Rios, Ana Cristina ;
dos Santos Silva, Danielly Beraldo ;
Macedo Mota, Lucio Flavio ;
Magalhaes Muniz, Maria Malane ;
Medeiros de Morais, Camilo de Lelis ;
Gomes de Lima, Kassio Michell ;
Cunha Junior, Luis Carlos ;
Baldi, Fernando ;
Carvalheiro, Roberto ;
de Oliveira, Henrique Nunes ;
Loyola Chardulo, Luis Artur ;
de Albuquerque, Lucia Galvao .
JOURNAL OF ANIMAL SCIENCE, 2018, 96 (10) :4229-4237
[8]   Simultaneous non-destructive determination of two components of combined paracetamol and amantadine hydrochloride in tablets and powder by NIR spectroscopy and artificial neural networks [J].
Dou, Y ;
Sun, Y ;
Ren, YQ ;
Ju, P ;
Ren, YL .
JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS, 2005, 37 (03) :543-549
[9]   The successive projections algorithm for interval selection in PLS [J].
Gomes, Adriano de Araujo ;
Harrop Galvao, Roberto Kawakami ;
Ugulino de Araujo, Mario Cesar ;
Veras, Germano ;
da Silva, Edvan Cirino .
MICROCHEMICAL JOURNAL, 2013, 110 :202-208
[10]   Using near-infrared spectroscopy in the classification of white and iberian pork with neural networks [J].
Guillen, Alberto ;
del Moral, F. G. ;
Herrera, L. J. ;
Rubio, G. ;
Rojas, I. ;
Valenzuela, O. ;
Pomares, H. .
NEURAL COMPUTING & APPLICATIONS, 2010, 19 (03) :465-470