A path to stable low-torque plasma operation in ITER with test blanket modules

被引:11
作者
Lanctot, M. J. [1 ,8 ]
Snipes, J. A. [2 ]
Reimerdes, H. [3 ]
Paz-Soldan, C. [1 ]
Logan, N. [5 ]
Hanson, J. M. [6 ]
Buttery, R. J. [1 ]
deGrassie, J. S. [1 ]
Garofalo, A. M. [1 ]
Gray, T. K. [4 ]
Grierson, B. A. [5 ]
King, J. D. [1 ,8 ]
Kramer, G. J. [5 ]
La Haye, R. J. [1 ]
Pace, D. C. [1 ]
Park, J. -K. [5 ]
Salmi, A. [7 ]
Shiraki, D. [4 ]
Strait, E. J. [1 ]
Solomon, W. M. [5 ]
Tala, T. [7 ]
Van Zeeland, M. A. [1 ]
机构
[1] Gen Atom Co, POB 85608, San Diego, CA 92186 USA
[2] ITER Org, Route Vinon Sur Verdon,CS 90 046, F-13067 St Paul Les Durance, France
[3] Ecole Polytech Fed Lausanne, CRPP, CH-1015 Lausanne, Switzerland
[4] Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA
[5] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA
[6] Columbia Univ, New York, NY 10027 USA
[7] Assoc EURATOM Tekes, FI-02044 Espoo, Finland
[8] US DOE, 1000 Independence Ave SW, Washington, DC 20585 USA
关键词
test blanket modules; error fields; ITER; DIII-D; DIII-D; ERROR-FIELD; WALL;
D O I
10.1088/1741-4326/57/3/036004
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
New experiments in the low-torque ITER Q = 10 scenario on DIII-D demonstrate that n = 1 magnetic fields from a single row of ex-vessel control coils enable operation at ITER performance metrics in the presence of applied non-axisymmetric magnetic fields from a test blanket module (TBM) mock-up coil. With n = 1 compensation, operation below the ITER-equivalent injected torque is successful at three times the ITER equivalent toroidal magnetic field ripple for a pair of TBMs in one equatorial port, whereas the uncompensated TBM field leads to rotation collapse, loss of H-mode and plasma current disruption. In companion experiments at high plasma beta, where the n = 1 plasma response is enhanced, uncorrected TBM fields degrade energy confinement and the plasma angular momentum while increasing fast ion losses; however, disruptions are not routinely encountered owing to increased levels of injected neutral beam torque. In this regime, n = 1 field compensation leads to recovery of a dominant fraction of the TBM-induced plasma pressure and rotation degradation, and an 80% reduction in the heat load to the first wall. These results show that the n = 1 plasma response plays a dominant role in determining plasma stability, and that n = 1 field compensation alone not only recovers most of the impact on plasma performance of the TBM, but also protects the first wall from potentially damaging heat flux. Despite these benefits, plasma rotation braking from the TBM fields cannot be fully recovered using standard error field control. Given the uncertainty in extrapolation of these results to the ITER configuration, it is prudent to design the TBMs with as low a ferromagnetic mass as possible without jeopardizing the TBM mission.
引用
收藏
页数:14
相关论文
共 35 条
[1]   ITER fast ion confinement in the presence of the European test blanket module [J].
Akaslompolo, Simppa ;
Kurki-Suonio, Taina ;
Asunta, Otto ;
Cavinato, Mario ;
Gagliardi, Mario ;
Hirvijoki, Eero ;
Saibene, Gabriella ;
Sipila, Seppo ;
Snicker, Antti ;
Sarkimaki, Konsta ;
Varje, Jari .
NUCLEAR FUSION, 2015, 55 (09)
[2]   Error field amplification and rotation damping in tokamak plasmas [J].
Boozer, AH .
PHYSICAL REVIEW LETTERS, 2001, 86 (22) :5059-5061
[3]   The impact of 3D fields on tearing mode stability of H-modes [J].
Buttery, R. J. ;
Gerhardt, S. ;
La Haye, R. J. ;
Liu, Y. Q. ;
Reimerdes, H. ;
Sabbagh, S. ;
Chu, M. S. ;
Osborne, T. H. ;
Park, J. -K. ;
Pinsker, R. I. ;
Strait, E. J. ;
Yu, J. H. .
NUCLEAR FUSION, 2011, 51 (07)
[4]  
Buttery R.J., 1997, P 24 EUR PHYS SOC C, V21A, P265
[5]   A fusion development facility on the critical path to fusion energy [J].
Chan, V. S. ;
Stambaugh, R. D. ;
Garofalo, A. M. ;
Canik, J. ;
Kinsey, J. E. ;
Park, J. M. ;
Peng, M. Y. K. ;
Petrie, T. W. ;
Porkolab, M. ;
Prater, R. ;
Sawan, M. ;
Smith, J. P. ;
Snyder, P. B. ;
Stangeby, P. C. ;
Wong, C. P. C. .
NUCLEAR FUSION, 2011, 51 (08)
[6]   The integration of TBM systems in ITER [J].
Chuyanov, V. A. ;
Giancarli, L. M. ;
Kim, S. C. ;
Wong, C. P. C. .
FUSION ENGINEERING AND DESIGN, 2008, 83 (7-9) :817-823
[7]   Demonstration of ITER operational scenarios on DIII-D [J].
Doyle, E. J. ;
DeBoo, J. C. ;
Ferron, J. R. ;
Jackson, G. L. ;
Luce, T. C. ;
Murakami, M. ;
Osborne, T. H. ;
Park, J. -M. ;
Politzer, P. A. ;
Reimerdes, H. ;
Budny, R. V. ;
Casper, T. A. ;
Challis, C. D. ;
Groebner, R. J. ;
Holcomb, C. T. ;
Hyatt, A. W. ;
La Haye, R. J. ;
McKee, G. R. ;
Petrie, T. W. ;
Petty, C. C. ;
Rhodes, T. L. ;
Shafer, M. W. ;
Snyder, P. B. ;
Strait, E. J. ;
Wade, M. R. ;
Wang, G. ;
West, W. P. ;
Zeng, L. .
NUCLEAR FUSION, 2010, 50 (07)
[8]   Bifurcated states of a rotating tokamak plasma in the presence of a static error-field [J].
Fitzpatrick, R .
PHYSICS OF PLASMAS, 1998, 5 (09) :3325-3341
[9]   A Fusion Nuclear Science Facility for a fast-track path to DEMO [J].
Garofalo, A. M. ;
Abdou, M. A. ;
Canik, J. M. ;
Chan, V. S. ;
Hyatt, A. W. ;
Hill, D. N. ;
Morley, N. B. ;
Navratil, G. A. ;
Sawan, M. E. ;
Taylor, T. S. ;
Wong, C. P. C. ;
Wu, W. ;
Ying, A. .
FUSION ENGINEERING AND DESIGN, 2014, 89 (7-8) :876-881
[10]   Advances towards QH-mode viability for ELM-stable operation in ITER [J].
Garofalo, A. M. ;
Solomon, W. M. ;
Park, J. -K. ;
Burrell, K. H. ;
DeBoo, J. C. ;
Lanctot, M. J. ;
McKee, G. R. ;
Reimerdes, H. ;
Schmitz, L. ;
Schaffer, M. J. ;
Snyder, P. B. .
NUCLEAR FUSION, 2011, 51 (08)