Free arrangements and coefficients of characteristic polynomials

被引:19
作者
Abe, Takuro [1 ]
Yoshinaga, Masahiko [2 ]
机构
[1] Kyoto Univ, Dept Mech Engn & Sci, Sakyo Ku, Kyoto 6068501, Japan
[2] Hokkaido Univ, Dept Math, Kita Ku, Sapporo, Hokkaido 0600810, Japan
关键词
Arrangements of hyperplanes; Free arrangements; Characteristic polynomials; Multirestrictions;
D O I
10.1007/s00209-013-1165-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Ziegler showed that the multirestriction of a free arrangement is also free. After Ziegler's work, several results concerning the "reverse direction", i.e., characterizing freeness of an arrangement via that of its multirestriction, have appeared. In this paper, we prove a new characterization of freeness in which the second Betti number of the arrangement plays a crucial role.
引用
收藏
页码:911 / 919
页数:9
相关论文
共 10 条
[1]   The characteristic polynomial of a multiarrangement [J].
Abe, Takuro ;
Terao, Hiroaki ;
Wakefield, Max .
ADVANCES IN MATHEMATICS, 2007, 215 (02) :825-838
[2]  
Abe T, 2013, MICH MATH J, V62, P117
[3]  
Saito K., 1980, J.Fac. Sci. Univ. Tokyo Sect. IA Math., V27, P265, DOI 10.3136/nskkk1962.27.6265
[4]   Freeness and multirestriction of hyperplane arrangements [J].
Schulze, Mathias .
COMPOSITIO MATHEMATICA, 2012, 148 (03) :799-806
[6]  
TERAO H., 1980, J FS U TOKYO 1A, V27, P293
[7]   On the freeness of 3-arrangements [J].
Yoshinaga, M .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2005, 37 :126-134
[8]   Characterization of a free arrangement and conjecture of Edelman and Reiner [J].
Yoshinaga, M .
INVENTIONES MATHEMATICAE, 2004, 157 (02) :449-454
[9]   THE 1ST 2 OBSTRUCTIONS TO THE FREENESS OF ARRANGEMENTS [J].
YUZVINSKY, S .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 335 (01) :231-244
[10]  
Ziegler G., 1986, CONT MATH, V90, P345