q-Deformed Quantum Mechanics Based on the q-Addition

被引:21
作者
Chung, Won Sang [1 ,2 ]
Hassanabadi, Hassan [3 ]
机构
[1] Gyeongsang Natl Univ, Coll Nat Sci, Dept Phys, Jinju 660701, South Korea
[2] Gyeongsang Natl Univ, Coll Nat Sci, Res Inst Nat Sci, Jinju 660701, South Korea
[3] Shahrood Univ Technol, Fac Phys, Shahrood, Iran
来源
FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS | 2019年 / 67卷 / 04期
基金
新加坡国家研究基金会;
关键词
momentum eigenfunction; q-deformed quantum mechanics; q-derivative; HARMONIC-OSCILLATOR; Q-ANALOGS; ALGEBRA;
D O I
10.1002/prop.201800111
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we consider the q-derivative appearing in the non-extensive thermodynamics to formulate the q-deformed quantum mechanics. From the q-addition we discuss the q-deformed calculus and q-deformed elementary functions. We use these to construct the q-deformed quantum mechanics. As examples we discuss momentum eigenfunction, one dimensional box problem and quantum harmonic potential problem.
引用
收藏
页数:7
相关论文
共 33 条
[1]   A note on the q-deformation-theoretic aspect of the generalized entropies in nonextensive physics [J].
Abe, S .
PHYSICS LETTERS A, 1997, 224 (06) :326-330
[2]   HILBERT SPACES OF ANALYTIC-FUNCTIONS AND GENERALIZED COHERENT STATES [J].
ARIK, M ;
COON, DD .
JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (04) :524-527
[3]  
Biedenharn L., 1990, J PHYS A, V22, pL873
[4]   A possible deformed algebra and calculus inspired in nonextensive thermostatistics [J].
Borges, EP .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 340 (1-3) :95-101
[5]   GENERALIZED DEFORMED ALGEBRA [J].
CHUNG, WS ;
CHUNG, KS ;
NAM, ST ;
UM, CI .
PHYSICS LETTERS A, 1993, 183 (5-6) :363-370
[6]  
CURADO E, 1991, J PHYS A, P69
[7]   On the stability of analytic entropic forms [J].
Curado, EMF ;
Nobre, FD .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 335 (1-2) :94-106
[8]   GENERALIZED DEFORMED OSCILLATOR AND NONLINEAR ALGEBRAS [J].
DASKALOYANNIS, C .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (15) :L789-L794
[9]   Generally deformed oscillator, isospectral oscillator system and Hermitian phase operator [J].
Fu, HC ;
Sasaki, R .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (14) :4049-4064
[10]  
Jackson FH, 1909, Messenger Math, V38, P57