Convergence of mimetic finite difference method for diffusion problems on polyhedral meshes with curved faces

被引:81
作者
Brezzi, F [1 ]
Lipnikov, K
Shashkov, M
机构
[1] Univ Pavia, Dept Math, I-27100 Pavia, Italy
[2] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
关键词
Finite differences; mimetic discretizations; polyhedral meshes; convergence;
D O I
10.1142/S0218202506001157
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
New mimetic finite difference discretizations of diffusion problems on unstructured polyhedral meshes with strongly curved (non-planar) faces are developed. The material properties are described by a full tensor. The optimal convergence estimates, the second order for a scalar variable (pressure) and the first order for a vector variable (velocity), are proved.
引用
收藏
页码:275 / 297
页数:23
相关论文
共 19 条
[1]   An introduction to multipoint flux approximations for quadrilateral grids [J].
Aavatsmark, I .
COMPUTATIONAL GEOSCIENCES, 2002, 6 (3-4) :405-432
[2]  
[Anonymous], PROGR ELECTROMAGNETI
[3]   AN INTERIOR PENALTY FINITE-ELEMENT METHOD WITH DISCONTINUOUS ELEMENTS [J].
ARNOLD, DN .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (04) :742-760
[4]   Superconvergence of the velocity in mimetic finite difference methods on quadrilaterals [J].
Berndt, M ;
Lipnikov, K ;
Shashkov, M ;
Wheeler, MF ;
Yotov, I .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (04) :1728-1749
[5]  
BERNDT M, 2001, E W J NUMER MATH, V9, P253
[6]   A proof of the inf-sup condition for the Stokes equations on Lipschitz domains [J].
Bramble, JH .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2003, 13 (03) :361-371
[7]  
Brenner S. C., 2007, Texts Appl. Math., V15
[8]   A family of mimetic finite difference methods on polygonal and polyhedral meshes [J].
Brezzi, F ;
Lipnikov, K ;
Simoncini, V .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2005, 15 (10) :1533-1551
[9]  
BREZZI F, IN PRESS SIAM J NUME
[10]  
Brezzi F., 2012, MIXED HYBRID FINITE, V15