Extreme values of some continuous nowhere differentiable functions

被引:14
作者
Allaart, PC [1 ]
Kawamura, K [1 ]
机构
[1] Univ N Texas, Dept Math, Denton, TX 76203 USA
关键词
D O I
10.1017/S0305004105008984
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the functions T-n(x) defined as the nth partial derivative of Lebesgue's singular function L-a(x) with respect to a at a = 1/2. This sequence includes a multiple of the Takagi function as the case n = 1. We show that T-n is continuous but nowhere differentiable for each n, and determine the Holder order of T-n. From this, we derive that the Hausdorff dimension of the graph of T-n is one. Using a formula of Lomnicki and Ulam, we obtain an arithmetic expression for T-n(x) using the binary expansion of x, and use this to find the sets of points where T-2 and T-3 take on their absolute maximum and minimum values. We show that these sets are topological Cantor sets. In addition, we characterize the sets of local maximum and minimum points of T-2 and T-3.
引用
收藏
页码:269 / 295
页数:27
相关论文
共 18 条
  • [1] de Rham G., 1957, Rend. Semin. Mat. Univ. Politec. Torino, V16, P101
  • [2] Falconer K. J., 1985, The geometry of fractal sets
  • [3] Hata, 1983, HOKKAIDO J MATH, V12, P333, DOI [10.14492/hokmj/1470081010, DOI 10.14492/HOKMJ/1470081010]
  • [4] Hata M., 1984, Japan J. Appl. Math., V1, P183
  • [5] KAHANE JP, 1959, ENSEIGNEMENT MATH, V5, P53
  • [6] Kairies H.-H., 1998, ROCZNIK NAUK DYLAKT, V15, P73
  • [7] On the classification of self-similar sets determined by two contractions on the plane
    Kawamura, K
    [J]. JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 2002, 42 (02): : 255 - 286
  • [8] Keng H. L., 1982, INTRO NUMBER THEORY, P276
  • [9] KNONO N, 1986, JAPAN J APPL MATH, V3, P259
  • [10] KONO N, 1987, ACTA MATH HUNG, V49, P315