Stress Granules Inhibit Apoptosis by Reducing Reactive Oxygen Species Production

被引:178
作者
Takahashi, Masahiko [1 ]
Higuchi, Masaya [1 ]
Matsuki, Hideaki [1 ]
Yoshita, Manami [1 ]
Ohsawa, Toshiaki [1 ]
Oie, Masayasu [1 ]
Fujii, Masahiro [1 ]
机构
[1] Niigata Univ, Grad Sch Med & Dent Sci, Div Virol, Niigata, Japan
关键词
ENDORIBONUCLEASE G3BP; GENE-EXPRESSION; BINDING-PROTEIN; MESSENGER-RNAS; PHOSPHORYLATION; TRANSLATION; ACTIVATION; MECHANISM; PATHWAYS; GROWTH;
D O I
10.1128/MCB.00763-12
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cells can undergo two alternative fates following exposure to environmental stress: they either induce apoptosis or inhibit apoptosis and then repair the stress-induced alterations. These processes minimize cell loss and prevent the survival of cells with aberrant DNA and protein alterations. These two alternative fates are partly controlled by stress granules (SGs). While arsenite, hypoxia, and heat shock induce the formation of SGs that inhibit apoptosis, X-ray irradiation and genotoxic drugs do not induce SGs, and they are more prone to trigger apoptosis. However, it is unclear precisely how SGs control apoptosis. This study found that SGs suppress the elevation of reactive oxygen species (ROS), and this suppression is essential for inhibiting ROS-dependent apoptosis. This antioxidant activity of SGs is controlled by two SG components, GTPase-activating protein SH3 domain binding protein 1 (G3BP1) and ubiquitin-specific protease 10 (USP10). G3BP1 elevates the steady-state ROS level by inhibiting the antioxidant activity of USP10. However, following exposure to arsenite, G3BP1 and USP10 induce the formation of SGs, which uncovers the antioxidant activity of USP10. We also found that the antioxidant activity of USP10 requires the protein kinase activity of ataxia telangiectasia mutated (ATM). This work reveals that SGs are critical redox regulators that control cell fate under stress conditions.
引用
收藏
页码:815 / 829
页数:15
相关论文
共 27 条
[1]   Survey on the PABC recognition motif PAM2 [J].
Albrecht, M ;
Lengauer, T .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2004, 316 (01) :129-138
[2]   ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS [J].
Alexander, Angela ;
Cai, Sheng-Li ;
Kim, Jinhee ;
Nanez, Adrian ;
Sahin, Mustafa ;
MacLean, Kirsteen H. ;
Inoki, Ken ;
Guan, Kun-Liang ;
Shen, Jianjun ;
Person, Maria D. ;
Kusewitt, Donna ;
Mills, Gordon B. ;
Kastan, Michael B. ;
Walker, Cheryl Lyn .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (09) :4153-4158
[3]   RNA granules: post-transcriptional and epigenetic modulators of gene expression [J].
Anderson, Paul ;
Kedersha, Nancy .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2009, 10 (06) :430-436
[4]   Formation of stress granules inhibits apoptosis by suppressing stress-responsive MAPK pathways [J].
Arimoto, Kyoko ;
Fukuda, Hiroyuki ;
Imajoh-Ohmi, Shinobu ;
Saito, Haruo ;
Takekawa, Mutsuhiro .
NATURE CELL BIOLOGY, 2008, 10 (11) :1324-U167
[5]   Eukaryotic Stress Granules: The Ins and Outs of Translation [J].
Buchan, J. Ross ;
Parker, Roy .
MOLECULAR CELL, 2009, 36 (06) :932-941
[6]   ATM activates the pentose phosphate pathway promoting anti-oxidant defence and DNA repair [J].
Cosentino, Claudia ;
Grieco, Domenico ;
Costanzo, Vincenzo .
EMBO JOURNAL, 2011, 30 (03) :546-555
[7]   A novel phosphorylation-dependent RNase activity of GAP-SH3 binding protein: a potential link between signal transduction and RNA stability [J].
Gallouzi, IE ;
Parker, F ;
Chebli, K ;
Maurier, F ;
Labourier, E ;
Barlat, I ;
Capony, JP ;
Tocque, B ;
Tazi, J .
MOLECULAR AND CELLULAR BIOLOGY, 1998, 18 (07) :3956-3965
[8]   ATM activation in the presence of oxidative stress [J].
Guo, Zhi ;
Deshpande, Rajashree ;
Paull, Tanya T. .
CELL CYCLE, 2010, 9 (24) :4805-4811
[9]   Cooperation of NF-κB2/p100 activation and the PDZ domain binding motif signal in human T-cell leukemia virus type 1 (HTLV-1) Tax1 but not HTLV-2 Tax2 is crucial for interleukin-2-independent growth transformation of a T-cell line [J].
Higuchi, Masaya ;
Tsubata, Chikako ;
Kondo, Rie ;
Yoshida, Sakiko ;
Takahashi, Masahiko ;
Oie, Masayasu ;
Tanaka, Yuetsu ;
Mahieux, Renaud ;
Matsuoka, Masao ;
Fujii, Masahiro .
JOURNAL OF VIROLOGY, 2007, 81 (21) :11900-11907
[10]   Dynamic shuttling of TIA-1 accompanies the recruitment of mRNA to mammalian stress granules [J].
Kedersha, N ;
Cho, MR ;
Li, W ;
Yacono, PW ;
Chen, S ;
Gilks, N ;
Golan, DE ;
Anderson, P .
JOURNAL OF CELL BIOLOGY, 2000, 151 (06) :1257-1268