In this paper we present a rare combination of abstract results on the spectral properties of slanted matrices and some of their very specific applications to frame theory and sampling problems. We show that for a large class of slanted matrices boundedness below of the corresponding operator in l(P) for some p implies boundedness below in l(p) for all p. We use the established result to enrich our understanding of Banach frames and obtain new results for irregular sampling problems. We also present a version of a non-commutative Wiener's lemma for slanted matrices. (C) 2008 Elsevier Inc. All rights reserved.