Slanted matrices, Banach frames, and sampling

被引:56
作者
Aldroubi, Akram [1 ]
Baskakov, Anatoly [2 ]
Krishtal, Ilya [3 ]
机构
[1] Vanderbilt Univ, Dept Math, Nashville, TN 37240 USA
[2] Voronezh State Univ, Dept Appl Math & Mech, Voronezh 394693, Russia
[3] No Illinois Univ, Dept Math Sci, De Kalb, IL 60115 USA
基金
俄罗斯基础研究基金会; 美国国家科学基金会;
关键词
slanted matrices; boundedness below; banach frames; irregular sampling; non-uniform sampling;
D O I
10.1016/j.jfa.2008.06.024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we present a rare combination of abstract results on the spectral properties of slanted matrices and some of their very specific applications to frame theory and sampling problems. We show that for a large class of slanted matrices boundedness below of the corresponding operator in l(P) for some p implies boundedness below in l(p) for all p. We use the established result to enrich our understanding of Banach frames and obtain new results for irregular sampling problems. We also present a version of a non-commutative Wiener's lemma for slanted matrices. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:1667 / 1691
页数:25
相关论文
共 43 条
[1]   On stability of sampling-reconstruction models [J].
Acosta-Reyes, Ernesto ;
Aldroubi, Akram ;
Krishtal, Ilya .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2009, 31 (1-3) :5-34
[2]   Robustness of sampling and reconstruction and Beurling-Landau-type theorems for shift-invariant spaces [J].
Aldroubi, A ;
Krishtal, I .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2006, 20 (02) :250-260
[3]   p-frames and shift invariant subspaces of LP [J].
Aldroubi, A ;
Sun, Q ;
Tang, WS .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2001, 7 (01) :1-21
[4]   Beurling-Landau-type theorems for non-uniform sampling in shift invariant spline spaces [J].
Aldroubi, A ;
Gröchenig, K .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2000, 6 (01) :93-103
[5]   Nonuniform sampling and reconstruction in shift-invariant spaces [J].
Aldroubi, A ;
Gröchenig, K .
SIAM REVIEW, 2001, 43 (04) :585-620
[6]   Parseval frame wavelets with En(2) dilations [J].
Bakic, D ;
Krishtal, I ;
Wilson, EN .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2005, 19 (03) :386-431
[7]   The noncommutative wiener lemma, linear independence, and spectral properties of the algebra of time-frequency shift operators [J].
Balan, Radu .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (07) :3921-3941
[8]   Density, overcompleteness, and localization of frames. II. Gabor systems [J].
Balan, Radu ;
Casazza, Peter G. ;
Heil, Christopher ;
Landau, Zeph .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2006, 12 (03) :309-344
[9]   Density, overcompleteness, and localization of frames. I. Theory [J].
Balan, Radu ;
Casazza, Peter G. ;
Heil, Christopher ;
Landau, Zeph .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2006, 12 (02) :105-143
[10]  
BASKAKOV AG, 1990, FUNCT ANAL APPL+, V24, P222