Dipole-dipole interaction between a quantum dot and a graphene nanodisk

被引:106
作者
Cox, Joel D. [1 ]
Singh, Mahi R. [1 ]
Gumbs, Godfrey [2 ]
Anton, Miguel A. [3 ]
Carreno, Fernando [3 ]
机构
[1] Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada
[2] CUNY Hunter Coll, Dept Phys & Astron, New York, NY 10065 USA
[3] Univ Complutense Madrid, Escuela Univ Opt, Madrid 28037, Spain
关键词
SURFACE-PLASMON RESONANCES; ENERGY-TRANSFER; NANOPARTICLES; TRANSPARENCY; PLATFORM; OPTICS; LIGHT; OXIDE;
D O I
10.1103/PhysRevB.86.125452
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study theoretically the dipole-dipole interaction and energy transfer in a hybrid system consisting of a quantum dot and graphene nanodisk embedded in a nonlinear photonic crystal. In our model, a probe laser field is applied to measure the energy transfer between the quantum dot and graphene nanodisk, while a control field manipulates the energy transfer process. These fields create excitons in the quantum dot and surface plasmon polaritons in the graphene nanodisk which interact via the dipole-dipole interaction. Here, the nonlinear photonic crystal acts as a tunable photonic reservoir for the quantum dot, and is used to control the energy transfer. We have found that the spectrum of power absorption in the quantum dot has two peaks due to the creation of two dressed excitons in the presence of the dipole-dipole interaction. The energy transfer rate spectrum of the graphene nanodisk also has two peaks due to the absorption of these two dressed excitons. Additionally, energy transfer between the quantum dot and the graphene nanodisk can be switched on and off by applying a pump laser to the photonic crystal or by adjusting the strength of the dipole-dipole interaction. We show that the intensity and frequencies of the peaks in the energy transfer rate spectra can be modified by changing the number of graphene monolayers in the nanodisk or the separation between the quantum dot and graphene. Our results agree with existing experiments on a qualitative basis. The principle of our system can be employed to fabricate nanobiosensors, optical nanoswitches, and energy transfer devices.
引用
收藏
页数:10
相关论文
共 52 条
[2]  
[Anonymous], 2010, Modern Introduction to Surface Plasmons: Theory, Mathematica Modeling, and Applications
[3]   Strongly coupled quantum dot-metal nanoparticle systems: Exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effects [J].
Artuso, Ryan D. ;
Bryant, Garnett W. .
PHYSICAL REVIEW B, 2010, 82 (19)
[4]  
Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/nmat2629, 10.1038/NMAT2629]
[5]  
Bao QL, 2011, NAT PHOTONICS, V5, P411, DOI [10.1038/nphoton.2011.102, 10.1038/NPHOTON.2011.102]
[6]  
Bohren C.F, 2008, Absorption and Scattering of Light by Small Particles
[7]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/nphoton.2010.186, 10.1038/NPHOTON.2010.186]
[8]   A Facile One-step Method to Produce Graphene-CdS Quantum Dot Nanocomposites as Promising Optoelectronic Materials [J].
Cao, Aoneng ;
Liu, Zhen ;
Chu, Saisai ;
Wu, Minghong ;
Ye, Zhangmei ;
Cai, Zhengwei ;
Chang, Yanli ;
Wang, Shufeng ;
Gong, Qihuang ;
Liu, Yuanfang .
ADVANCED MATERIALS, 2010, 22 (01) :103-+
[9]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[10]   Energy Transfer from Individual Semiconductor Nanocrystals to Graphene [J].
Chen, Zheyuan ;
Berciaud, Stephane ;
Nuckolls, Colin ;
Heinz, Tony F. ;
Brus, Louis E. .
ACS NANO, 2010, 4 (05) :2964-2968