Preantipodes for dual quasi-bialgebras

被引:4
作者
Ardizzoni, Alessandro [1 ]
Pavarin, Alice [2 ]
机构
[1] Univ Ferrara, Dept Math, I-44121 Ferrara, Italy
[2] Univ Padua, Dept Pure & Appl Math, I-35121 Padua, Italy
关键词
HOPF ALGEBRAS;
D O I
10.1007/s11856-012-0024-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is known that a dual quasi-bialgebra with antipode H, i.e., a dual quasi-Hopf algebra, fulfils a fundamental theorem for right dual quasi-Hopf H-bicomodules. The converse in general is not true. We prove that, for a dual quasi-bialgebra H, the structure theorem is equivalent to the existence of a suitable map S: H -> H that we call a preantipode of H.
引用
收藏
页码:281 / 295
页数:15
相关论文
共 11 条
[1]   Quasialgebra structure of the octonions [J].
Albuquerque, H ;
Majid, S .
JOURNAL OF ALGEBRA, 1999, 220 (01) :188-224
[2]   Hochschild cohomology and "smoothness" in monoidal categories [J].
Ardizzoni, A. ;
Menini, C. ;
Stefan, D. .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2007, 208 (01) :297-330
[3]   Integrals for (dual) quasi-Hopf algebras. Applications [J].
Bulacu, D ;
Caenepeel, S .
JOURNAL OF ALGEBRA, 2003, 266 (02) :552-583
[4]  
DRINFELD V. G., 1990, Leningrad Math. J., V1, P1419
[5]  
Hausser F., ARXIVMATH9904164V2
[6]  
Kassel C., 1995, GRADUATE TEXT MATH, V155
[7]   AN ASSOCIATIVE ORTHOGONAL BILINEAR FORM FOR HOPF ALGEBRAS [J].
LARSON, RG ;
SWEEDLER, ME .
AMERICAN JOURNAL OF MATHEMATICS, 1969, 91 (01) :75-&
[8]  
Majid S., 1992, Contemp. Math., V134, P219
[9]  
Majid S., 1995, Foundations of Quantum Group Theory
[10]   Two characterizations of finite quasi-Hopf algebras [J].
Schauenburg, P .
JOURNAL OF ALGEBRA, 2004, 273 (02) :538-550