Hypertoric category O

被引:37
作者
Braden, Tom [1 ]
Licata, Anthony [2 ]
Proudfoot, Nicholas [3 ]
Webster, Ben [3 ]
机构
[1] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
[2] Stanford Univ, Dept Math, Palo Alto, CA 94305 USA
[3] Univ Oregon, Dept Math, Eugene, OR 97403 USA
基金
美国国家科学基金会;
关键词
Enveloping algebras; Category O; Quantization; Localization; KOSZUL DUALITY; G-MODULES; ALGEBRAS; FUNCTORS; VARIETIES; GEOMETRY;
D O I
10.1016/j.aim.2012.06.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the representation theory of the invariant subalgebra of the Weyl algebra under a torus action, which we call a "hypertoric enveloping algebra". We define an analogue of BGG category O for this algebra, and identify it with a certain category of sheaves on a hypertoric variety. We prove that a regular block of this category is highest weight and Koszul, identify its Koszul dual, compute its center, and study its cell structure. We also consider a collection of derived auto-equivalences analogous to the shuffling and twisting functors for BGG category O. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:1487 / 1545
页数:59
相关论文
共 37 条
[1]  
Andersen H. H., 2003, Represent. Theory, V7, P681
[2]  
[Anonymous], 1982, ANALYSE TOPOLOGIE ES
[3]  
Arkhipov S., 2004, Adv. Stud. Pure Math, V40, P27
[4]   Discriminantal arrangements, fiber polytopes and formality [J].
Bayer, MM ;
Brandt, KA .
JOURNAL OF ALGEBRAIC COMBINATORICS, 1997, 6 (03) :229-246
[5]  
BEILINSON A, 1981, CR ACAD SCI I-MATH, V292, P15
[6]   TILTING EXERCISES [J].
Beilinson, A. ;
Bezrukavnikov, R. ;
Mirkovic, I. .
MOSCOW MATHEMATICAL JOURNAL, 2004, 4 (03) :547-557
[7]   Koszul duality patterns in representation theory [J].
Beilinson, A ;
Ginzburg, V ;
Soergel, W .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 9 (02) :473-527
[8]  
Bellamy G., ARXIV10054645
[9]   The geometry and topology of toric hyperkahler manifolds [J].
Bielawski, R ;
Danceri, AS .
COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2000, 8 (04) :727-760
[10]  
BORHO W, 1989, PROGR MATH, V78