Perturbation bound of singular linear systems

被引:16
作者
Wei, Y [1 ]
机构
[1] Fudan Univ, Dept Math, Shanghai 200433, Peoples R China
[2] Fudan Univ, Lab Math Nonlinear Sci, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
singular linear algebraic system; (weighted) linear least squares problem; weighted Moore-Penrose inverse; componentwise perturbation;
D O I
10.1016/S0096-3003(99)00120-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A classical perturbation bound in numerical linear algebra is extended to more general cases of singular linear algebraic systems and weighted linear least squares problem. Componentwise perturbation analysis of linear least squares problem is also derived. (C) 1999 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:211 / 220
页数:10
相关论文
共 22 条
[1]   ON THE AUGMENTED SYSTEM APPROACH TO SPARSE LEAST-SQUARES PROBLEMS [J].
ARIOLI, M ;
DUFF, IS ;
DERIJK, PPM .
NUMERISCHE MATHEMATIK, 1989, 55 (06) :667-684
[2]  
BENISRAEL A, 1974, GEN INVERSES THEORY
[3]  
BJORCK A, 1991, BIT, V31, P238
[4]  
BJORCK A, 1990, HDB NUMERICAL ANAL, V1
[5]  
Chen G. L., 1992, J E CHINA NORMAL U, V1, P1
[6]   IMPROVED ERROR-BOUNDS FOR UNDERDETERMINED SYSTEM SOLVERS [J].
DEMMEL, JW ;
HIGHAM, NJ .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1993, 14 (01) :1-14
[7]   New perturbation results for equality-constrained least squares problems [J].
Ding, J ;
Hang, WH .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 272 :181-192
[8]  
HIGHAM NJ, 1994, P S APPL MATH, V48, P49
[9]  
Lawson C.L., 1974, SOLVING LEAST SQUARE
[10]   SCALING FOR NUMERICAL STABILITY IN GAUSSIAN ELIMINATION [J].
SKEEL, RD .
JOURNAL OF THE ACM, 1979, 26 (03) :494-526