Acute and subchronic oral toxicity studies in rats with nanoscale and pigment grade titanium dioxide particles

被引:70
作者
Warheit, D. B. [1 ]
Brown, S. C. [1 ]
Donner, E. M. [2 ]
机构
[1] Chemours Co, Wilmington, DE USA
[2] DuPont Haskell Global Ctr Hlth & Environm Sci, Newark, DE USA
关键词
Subchronic toxicity testing; Titanium dioxide; Nanoparticles; Guideline studies; Oral exposure; Particles; LONG-TERM EXPOSURE; GENE-EXPRESSION; IN-VITRO; NANOCRYSTALLINE TIO2; NANOPARTICLES; MICE; FOOD; BIODISTRIBUTION; ABSORPTION; RESPONSES;
D O I
10.1016/j.fct.2015.08.026
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Data generated using standardized testing protocols for toxicity studies generally provide reproducible and reliable results for establishing safe levels and formulating risk assessments. The findings of three OECD guideline-type oral toxicity studies of different duration in rats are summarized in this publication; each study evaluated different titanium dioxide (TiO2) particles of varying sizes and surface coatings. Moreover, each study finding demonstrated an absence of any TiO2 -related hazards. To briefly summarize the findings: 1) In a subchronic 90-day study (OECD TG 408), groups of young adult male and female rats were dosed with rutile-type, surface-coated pigment-grade TiO2 test particles (d(50) = 145 nm - 21% nanoparticles by particle number criteria) by oral gavage for 90 days. The no-adverse-effect level (NOAEL) for both male and female rats in this study was 1000 mg/kg bw/day, the highest dose tested. The NOAEL was determined based on a lack of TiO2 particle-related adverse effects on any in-life, clinical pathology, or anatomic/microscopic pathology parameters; 2) In a 28-day repeated-dose oral toxicity study (OECD TG 407), groups of young adult male rats were administered daily doses of two rutile-type, uncoated, pigment-grade TiO2 test particles (d50 = 173 nm by number) by daily oral gavage at a dose of 24,000 mg/kg bw/day. There were no adverse effects measured during or following the end of the exposure period; and the NOAEL was determined to be 24,000 mg/kg bw/day; 3) In an acute oral toxicity study (OECD TG 425), female rats were administered a single oral exposure of surface-treated rutile/anatase nanoscale TiO2 particles (d(50) = 73 nm by number) with doses up to 5000 mg/kg and evaluated over a 14-day post-exposure period. Under the conditions of this study, the oral LD50 for the test substance was >5000 mg/kg bw. In summary, the results from these three toxicity studies each with different TiO2 particulate-types, demonstrated an absence of adverse toxicological effects. Apart from reporting the findings of these three studies, this publication also focuses on additional critical issues associated with particle and nanotoxicology studies. First, describing the detailed methodology requirements and rigor upon which the standardized OECD 408 guideline subchronic oral toxicity studies are conducted. Moreover, an attempt is made to reconcile the complex issue of particle size distribution as it relates to measurements of nanoscale and pigment-grade TiO2 particles. Clearly this has been a confusing issue and often misrepresented in the media and the scientific literature. It is clear that the particle-size distribution for pigment-grade TiO2, contains a small ("tail") component of nanoscale particles (i.e., 21% by particle number and <1% by weight in the test material used in the 90-day study). However, this robust particle characterization finding should not be confused with mislabeling the test materials as exclusively in the nanoscale range. Moreover, based upon the findings presented herein, there appears to be no significant oral toxicity impact contributed by the nanoscale component of the TiO2 Test Material sample in the 90-day study. Finally, it seems reasonable to conclude that the study findings should be considered for read-across purposes to food-grade TiO2 particles (e.g., E171), as the physicochemical characteristics are quite similar. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:208 / 224
页数:17
相关论文
共 57 条
[21]   RETRACTED: Intragastric exposure to titanium dioxide nanoparticles induced nephrotoxicity in mice, assessed by physiological and gene expression modifications (Retracted article. See vol. 12, pg. 22, 2015) [J].
Gui, Suxin ;
Sang, Xuezi ;
Zheng, Lei ;
Ze, Yuguan ;
Zhao, Xiaoyang ;
Sheng, Lei ;
Sun, Qingqing ;
Cheng, Zhe ;
Cheng, Jie ;
Hu, Renping ;
Wang, Ling ;
Hong, Fashui ;
Tang, Meng .
PARTICLE AND FIBRE TOXICOLOGY, 2013, 10
[22]   Towards nanotechnology regulation - Publish the unpublishable [J].
Hankin, Steve ;
Boraschi, Diana ;
Duschl, Albert ;
Lehr, Claus-Michael ;
Lichtenbeld, Hera .
NANO TODAY, 2011, 6 (03) :228-231
[23]   Neurotoxicological effects and the impairment of spatial recognition memory in mice caused by exposure to TiO2 nanoparticles [J].
Hu, Renping ;
Gong, Xiaolan ;
Duan, Yanmei ;
Li, Na ;
Che, Yi ;
Cui, Yaling ;
Zhou, Min ;
Liu, Chao ;
Wang, Han ;
Hong, Fashui .
BIOMATERIALS, 2010, 31 (31) :8043-8050
[24]  
[ISO] International Organization for Standardizaion, 2014, 1332212014EN ISO
[25]  
Jillavenkatesa A., 2001, NIST Recommended Practice Guide - Particle size Characterization
[26]   Human in vivo and in vitro studies on gastrointestinal absorption of titanium dioxide nanoparticles [J].
Jones, Kate ;
Morton, Jackie ;
Smith, Ian ;
Jurkschat, Kerstin ;
Harding, Anne-Helen ;
Evans, Gareth .
TOXICOLOGY LETTERS, 2015, 233 (02) :95-101
[27]   Critical Review of Public Health Regulations of Titanium Dioxide, a Human Food Additive [J].
Jovanovic, Boris .
INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT, 2015, 11 (01) :10-20
[28]   PREPARATION AND CHARACTERIZATION OF QUANTUM-SIZE TITANIUM-DIOXIDE [J].
KORMANN, C ;
BAHNEMANN, DW ;
HOFFMANN, MR .
JOURNAL OF PHYSICAL CHEMISTRY, 1988, 92 (18) :5196-5201
[29]   DETERMINATION OF TRACE AMOUNTS OF CADMIUM, COBALT, CHROMIUM, IRON, MOLYBDENUM, NICKEL, SELENIUM, TITANIUM, VANADIUM AND ZINC IN BLOOD AND MILK BY NEUTRON-ACTIVATION ANALYSIS [J].
LAVI, N ;
ALFASSI, ZB .
ANALYST, 1990, 115 (06) :817-822
[30]   Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol [J].
Lin, H. ;
Huang, C. P. ;
Li, W. ;
Ni, C. ;
Shah, S. Ismat ;
Tseng, Yao-Hsuan .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2006, 68 (1-2) :1-11