Hierarchically porous carbon nanosheets derived from alkali metal carbonates and their capacitance in alkaline electrolytes

被引:3
作者
Nersisyan, Hayk H. [1 ,3 ]
Lee, Seong Hun [1 ]
Choi, Jeong Hun [1 ]
Yoo, Bung Uk [2 ]
Suh, Hoyoung [4 ]
Kim, Jin-Gyu [4 ]
Lee, Jong-Hyeon [1 ,2 ,3 ]
机构
[1] Chungnam Natl Univ, Dept Adv Mat Engn, Grad Sch, 99 Daehak Ro, Daejeon 305764, South Korea
[2] Chungnam Natl Univ, Grad Sch Energy Sci & Technol, 99 Daehak Ro, Daejeon 305764, South Korea
[3] Chungnam Natl Univ, RASOM, 99 Daehak Ro, Daejeon 305764, South Korea
[4] KBSI, Ctr Electron Microscop Res, 169-148 Gwahang No, Daejeon 305806, South Korea
基金
新加坡国家研究基金会;
关键词
Hierarchically porous carbon; Combustion synthesis; Carbon nanosheets; Capacitance; PERFORMANCE SUPERCAPACITOR ELECTRODES; LITHIUM-ION BATTERIES; GRAPHENE; TEMPLATE; GRAPHITE; NANOWALLS; SURFACES; SHEETS; ENERGY; FILMS;
D O I
10.1016/j.matchemphys.2018.01.010
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
With the assistance of alkali metal carbonate M2CO3 (M is Na and K) as a carbon source and silicon as a displacement agent, an exothermic and self-sustaining reaction to produce two-dimensional (2-D) hierarchically porous carbon nanosheets (denoted as HP-CNSs) was achieved. The combustion reaction developed a temperature in the range of 1100-1400 degrees C and resulted in a two-phase product consisting of HP-CNSs and alkali metal silicate (M2O center dot nSiO(2)). After dissolving the M2O center dot nSiO(2) in distilled water, a black carbon powder was formed. Despite the simple synthesis process, the HP-CNSs had a BET surface area of about 178.6-860 m(2)g(-1) and a pore diameter in the range 0.5-150 nm. HP-CNSs based capacitors showed a specific capacity of about 85-240 Fg(-1) and good cyclic performance for over 1000 cycles. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:513 / 521
页数:9
相关论文
共 45 条
[1]  
[Anonymous], INT J SHS
[2]   From dead leaves to high energy density supercapacitors [J].
Biswal, Mandakini ;
Banerjee, Abhik ;
Deo, Meenal ;
Ogale, Satishchandra .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (04) :1249-1259
[3]   Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies [J].
Cancado, L. G. ;
Jorio, A. ;
Martins Ferreira, E. H. ;
Stavale, F. ;
Achete, C. A. ;
Capaz, R. B. ;
Moutinho, M. V. O. ;
Lombardo, A. ;
Kulmala, T. S. ;
Ferrari, A. C. .
NANO LETTERS, 2011, 11 (08) :3190-3196
[4]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[5]   2D graphene-like hierarchically porous carbon nanosheets from a nano-MgO template and ZnCl2 activation: morphology, porosity and supercapacitance performance [J].
Chang, Binbin ;
Zhang, Shouren ;
Sun, Li ;
Yin, Hang ;
Yang, Baocheng .
RSC ADVANCES, 2016, 6 (75) :71360-71369
[6]   Epitaxial graphene [J].
de Heer, Walt A. ;
Berger, Claire ;
Wu, Xiaosong ;
First, Phillip N. ;
Conrad, Edward H. ;
Li, Xuebin ;
Li, Tianbo ;
Sprinkle, Michael ;
Hass, Joanna ;
Sadowski, Marcin L. ;
Potemski, Marek ;
Martinez, Gerard .
SOLID STATE COMMUNICATIONS, 2007, 143 (1-2) :92-100
[7]   Nanosheets of Earth-Abundant Jarosite as Novel Anodes for High-Rate and Long-Life Lithium-Ion Batteries [J].
Ding, Yuan-Li ;
Wen, Yuren ;
Chen, Chia-Chin ;
van Aken, Peter A. ;
Maier, Joachim ;
Yu, Yan .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (19) :10518-10524
[8]   LARGE-SCALE SYNTHESIS OF CARBON NANOTUBES [J].
EBBESEN, TW ;
AJAYAN, PM .
NATURE, 1992, 358 (6383) :220-222
[9]   Template-Directed Synthesis of Pillared-Porous Carbon Nanosheet Architectures: High-Performance Electrode Materials for Supercapacitors [J].
Fan, Zhuangjun ;
Liu, Yang ;
Yan, Jun ;
Ning, Guoqing ;
Wang, Qian ;
Wei, Tong ;
Zhi, Linjie ;
Wei, Fei .
ADVANCED ENERGY MATERIALS, 2012, 2 (04) :419-424
[10]   Interpretation of Raman spectra of disordered and amorphous carbon [J].
Ferrari, AC ;
Robertson, J .
PHYSICAL REVIEW B, 2000, 61 (20) :14095-14107