A Review of Error Estimation in Adaptive Quadrature

被引:31
作者
Gonnet, Pedro [1 ,2 ]
机构
[1] ETH, Zurich, Switzerland
[2] Univ Oxford, Oxford OX1 2JD, England
关键词
Algorithms; Reliability; Numerical integration; adaptive quadrature; error estimation; DEFINITE INTEGRALS; ALGORITHM; ROUTINES; SYSTEMS;
D O I
10.1145/2333112.2333117
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The most critical component of any adaptive numerical quadrature routine is the estimation of the integration error. Since the publication of the first algorithms in the 1960s, many error estimation schemes have been presented, evaluated, and discussed. This article presents a review of existing error estimation techniques and discusses their differences and their common features. Some common shortcomings of these algorithms are discussed, and a new general error estimation technique is presented.
引用
收藏
页数:36
相关论文
共 50 条
  • [1] ERROR ESTIMATION IN AUTOMATIC QUADRATURE ROUTINES
    BERNTSEN, J
    ESPELID, TO
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1991, 17 (02): : 233 - 252
  • [2] Increasing the Reliability of Adaptive Quadrature Using Explicit Interpolants
    Gonnet, Pedro
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2010, 37 (03):
  • [3] Reliable estimation of generalized linear mixed models using adaptive quadrature
    Rabe-Hesketh, Sophia
    Skrondal, Anders
    Pickles, Andrew
    STATA JOURNAL, 2002, 2 (01) : 1 - 21
  • [4] A adaptive filter designbased on error estimation
    Zhu, XD
    Dai, WZ
    Pan, HP
    2004 8TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION, VOLS 1-3, 2004, : 2066 - 2069
  • [5] Error estimation in adaptive BEM by postprocessing interpolation
    Zhao, ZY
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 1998, 14 (07): : 633 - 645
  • [6] Error estimation for adaptive computations of shell structures
    Díez, Pedro
    Huerta, Antonio
    Revue Europeenne des Elements, 2000, 9 (1-3): : 49 - 66
  • [7] Error estimation of quadrature rules for evaluating singular integrals in boundary element problems
    Johnston, PR
    Elliott, D
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2000, 48 (07) : 949 - 962
  • [8] Experimental performance evaluation of error estimation and compensation technique for quadrature modulators and demodulators
    Yamaoka, Atsushi
    Yamaguchi, Keiichi
    Seto, Ichiro
    2008 IEEE RADIO AND WIRELESS SYMPOSIUM, VOLS 1 AND 2, 2008, : 143 - 146
  • [9] Algorithm 868: Globally doubly adaptive quadrature - Reliable Matlab codes
    Espelid, Terje O.
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2007, 33 (03): : E1 - E21
  • [10] Computing Cauchy principal value integrals using a standard adaptive quadrature
    Keller, Pawel
    Wrobel, Iwona
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 294 : 323 - 341