Gradient symplectic algorithms for solving the radial Schrodinger equation

被引:23
作者
Chin, SA [1 ]
Anisimov, P [1 ]
机构
[1] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
D O I
10.1063/1.2150831
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The radial Schrodinger equation for a spherically symmetric potential can be regarded as a one-dimensional classical harmonic oscillator with a time-dependent spring constant. For solving classical dynamics problems, symplectic integrators are well known for their excellent conservation properties. The class of gradient symplectic algorithms is particularly suited for solving harmonic-oscillator dynamics. By use of Suzuki's rule [Proc. Jpn. Acad., Ser. B: Phys. Biol. Sci. 69, 161 (1993)] for decomposing time-ordered operators, these algorithms can be easily applied to the Schrodinger equation. We demonstrate the power of this class of gradient algorithms by solving the spectrum of highly singular radial potentials using Killingbeck's method [J. Phys. A 18, 245 (1985)] of backward Newton-Ralphson iterations. (c) 2006 American Institute of Physics.
引用
收藏
页数:8
相关论文
共 39 条
[1]   VARIATIONAL AND PERTURBATIVE SCHEMES FOR A SPIKED HARMONIC-OSCILLATOR [J].
AGUILERANAVARRO, VC ;
ESTEVEZ, GA ;
GUARDIOLA, R .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (01) :99-104
[2]  
Battin R.H., 1999, AIAA ED SERIES
[3]   Fourth-order factorization of the evolution operator for time-dependent potentials [J].
Baye, D ;
Goldstein, G ;
Capel, P .
PHYSICS LETTERS A, 2003, 317 (5-6) :337-342
[4]   THE NUMEROV METHOD AND SINGULAR POTENTIALS [J].
BUENDIA, E ;
GUARDIOLA, R .
JOURNAL OF COMPUTATIONAL PHYSICS, 1985, 60 (03) :561-564
[5]   Study of the singular anharmonic potentials by means of the analytic continuation method [J].
Buendia, E ;
Galvez, FJ ;
Puertas, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (23) :6731-6738
[6]   FINITE-DIFFERENCE SCHEME TO SOLVE SCHRODINGER-EQUATIONS [J].
CHEN, RQ ;
XU, ZH ;
SUN, L .
PHYSICAL REVIEW E, 1993, 47 (05) :3799-3802
[7]   Structure of positive decompositions of exponential operators [J].
Chin, SA .
PHYSICAL REVIEW E, 2005, 71 (01)
[8]   Fourth-order algorithms for solving the imaginary-time Gross-Pitaevskii equation in a rotating anisotropic trap [J].
Chin, SA ;
Krotscheck, E .
PHYSICAL REVIEW E, 2005, 72 (03)
[9]   Forward symplectic integrators for solving gravitational few-body problems [J].
Chin, SA ;
Chen, CR .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2005, 91 (3-4) :301-322
[10]   Symplectic integrators from composite operator factorizations [J].
Chin, SA .
PHYSICS LETTERS A, 1997, 226 (06) :344-348