The effect of strain on tunnel barrier height in silicon quantum devices

被引:5
|
作者
Stein, Ryan M. [1 ]
Stewart, M. D., Jr. [2 ]
机构
[1] Univ Maryland, Joint Quantum Inst, College Pk, MD 20742 USA
[2] NIST, Gaithersburg, MD 20899 USA
关键词
THERMAL-EXPANSION; N-TYPE; PIEZORESISTANCE; STRESS; SI;
D O I
10.1063/5.0010253
中图分类号
O59 [应用物理学];
学科分类号
摘要
Semiconductor quantum dot (QD) devices experience a modulation of the band structure at the edge of lithographically defined gates due to mechanical strain. This modulation can play a prominent role in the device behavior at low temperatures, where QD devices operate. Here, we develop an electrical measurement of strain based on I ( V ) characteristics of tunnel junctions defined by aluminum and titanium gates. We measure relative differences in the tunnel barrier height due to strain consistent with experimentally measured coefficients of thermal expansion ( alpha) that differ from the bulk values. Our results show that the bulk parameters commonly used for simulating strain in QD devices incorrectly capture the impact of strain. The method presented here provides a path forward toward exploring different gate materials and fabrication processes in silicon QDs in order to optimize strain.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Alternatives to aluminum gates for silicon quantum devices: Defects and strain
    Stein, Ryan M.
    Barcikowski, Z. S.
    Pookpanratana, S. J.
    Pomeroy, J. M.
    Stewart, M. D.
    JOURNAL OF APPLIED PHYSICS, 2021, 130 (11)
  • [2] Investigation of double barrier MOS tunnel diodes with PECVD silicon quantum well
    Majkusiak, B.
    Beck, R. B.
    Mazurak, A.
    Grabowski, J.
    MICROELECTRONICS RELIABILITY, 2011, 51 (07) : 1172 - 1177
  • [3] Effect of metal interaction on the Schottky barrier height on adsorbate-terminated silicon surfaces
    Li, Yang
    Long, Wei
    Tung, Raymond T.
    APPLIED SURFACE SCIENCE, 2013, 284 : 720 - 725
  • [4] Prospects of silicide contacts for silicon quantum electronic devices
    Tsoukalas, K.
    Schupp, F.
    Sommer, L.
    Bouquet, I.
    Mergenthaler, M.
    Paredes, S.
    Trivino, N. Vico
    Luisier, M.
    Salis, G.
    Harvey-Collard, P.
    Zumbuhl, D.
    Fuhrer, A.
    APPLIED PHYSICS LETTERS, 2024, 125 (01)
  • [5] Strain-Controlled Recombination in InGaN/GaN Multiple Quantum Wells on Silicon Substrates
    Lin, Tao
    Zhou, Zhi Yan
    Huang, Yao Min
    Yang, Kun
    Zhang, Bai Jun
    Feng, Zhe Chuan
    NANOSCALE RESEARCH LETTERS, 2018, 13
  • [6] Strain induced mobility enhancement in p-type silicon structures: Bulk and quantum well (quantum kinetic approach)
    Kovalenko, K. L.
    Kozlovskiy, S. I.
    Sharan, N. N.
    JOURNAL OF APPLIED PHYSICS, 2019, 125 (08)
  • [7] Strain-Induced Spin-Resonance Shifts in Silicon Devices
    Pla, J. J.
    Bienfait, A.
    Pica, G.
    Mansir, J.
    Mohiyaddin, F. A.
    Zeng, Z.
    Niquet, Y. M.
    Morello, A.
    Schenkel, T.
    Morton, J. J. L.
    Bertet, P.
    PHYSICAL REVIEW APPLIED, 2018, 9 (04):
  • [8] First-principles study on barrier height of silicon emission from interface into oxide during silicon thermal oxidation
    Kageshima, Hiroyuki
    Akiyama, Toru
    Shiraishi, Kenji
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2024, 63 (04)
  • [9] A theoretical model for predicting Schottky-barrier height of the nanostructured silicide-silicon junction
    Lee, Jaehyun
    Kim, Seungchul
    Shin, Mincheol
    APPLIED PHYSICS LETTERS, 2017, 110 (23)
  • [10] Nanoepitaxy in the presence of lattice strain: Quantum dots and strain engineering of nanomembranes in the silicon model system
    Lagally, Max G.
    SELECTED TOPICS ON CRYSTAL GROWTH, 2010, 1270 : 316 - 323