Using deep learning for short-term load forecasting

被引:29
|
作者
Bendaoud, Nadjib Mohamed Mehdi [1 ]
Farah, Nadir [1 ]
机构
[1] Univ Badji Mokhtar Annaba, Dept Comp Sci, Labged Lab, Annaba, Algeria
来源
NEURAL COMPUTING & APPLICATIONS | 2020年 / 32卷 / 18期
关键词
Short-term load forecasting; Convolutional Neural Network; Deep learning; Artificial intelligence; FUNCTION APPROXIMATION; REGRESSION; MODELS;
D O I
10.1007/s00521-020-04856-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Electricity is the most important source of energy that is exploited nowadays; it is essential for the economic development and the social stability, and this implies the need to model systems that keeps a perfect balance between supply and demand. This task depends heavily on identifying the factors that affect power consumption and improving the precision of the forecasted model. This paper presents a novel convolutional neural network (CNN) for short-term load forecasting (STLF); studies have been conducted to identify the different factors that affect the power consumption in Algeria (North Africa), and these studies helped to determine the inputs to the model. The proposed CNN uses a two-dimensional input unlike the conventional one-dimensional input used for STLF, and the results given by the CNN were compared to other artificial intelligence methods and demonstrated good results for both: one-quarter-ahead and 24-h-ahead forecast.
引用
收藏
页码:15029 / 15041
页数:13
相关论文
共 50 条
  • [41] A Deep Learning Approach to Short-Term Quantitative Precipitation Forecasting
    Yadav, Nishant
    Ganguly, Auroop R.
    PROCEEDINGS OF 2020 10TH INTERNATIONAL CONFERENCE ON CLIMATE INFORMATICS (CI2020), 2020, : 8 - 14
  • [42] Individualized Short-Term Electric Load Forecasting With Deep Neural Network Based Transfer Learning and Meta Learning
    Lee, Eunjung
    Rhee, Wonjong
    IEEE ACCESS, 2021, 9 : 15413 - 15425
  • [43] Convolutional residual network to short-term load forecasting
    Sheng, Ziyu
    Wang, Huiwei
    Chen, Guo
    Zhou, Bo
    Sun, Jian
    APPLIED INTELLIGENCE, 2021, 51 (04) : 2485 - 2499
  • [44] Robust short-term electrical load forecasting framework for commercial buildings using deep recurrent neural networks
    Chitalia, Gopal
    Pipattanasomporn, Manisa
    Garg, Vishal
    Rahman, Saifur
    APPLIED ENERGY, 2020, 278
  • [45] Very Short-Term Prosumer Electric Load Forecasting Using Deep Learning-Based Techniques
    Aydin, Bari
    Zor, Kasim
    Disken, Gokay
    9TH INTERNATIONAL YOUTH CONFERENCE ON ENERGY, IYCE 2024, 2024,
  • [46] Deep learning with regularized robust long- and short-term memory network for probabilistic short-term load forecasting
    Jiang, He
    Zheng, Weihua
    JOURNAL OF FORECASTING, 2022, 41 (06) : 1201 - 1216
  • [47] Machine learning techniques for short-term load forecasting
    Becirovic, Elvisa
    Cosovic, Marijana
    PROCEEDINGS OF THE 2016 4TH INTERNATIONAL SYMPOSIUM ON ENVIRONMENTAL FRIENDLY ENERGIES AND APPLICATIONS (EFEA), 2016,
  • [48] Federated Learning for Short-Term Residential Load Forecasting
    Briggs, Christopher
    Fan, Zhong
    Andras, Peter
    IEEE OPEN ACCESS JOURNAL OF POWER AND ENERGY, 2022, 9 : 573 - 583
  • [49] Short-Term Electricity Load Forecasting with Machine Learning
    Madrid, Ernesto Aguilar
    Antonio, Nuno
    INFORMATION, 2021, 12 (02) : 1 - 21
  • [50] Deep Ensemble Learning Model for Short-Term Load Forecasting within Active Learning Framework
    Wang, Zengping
    Zhao, Bing
    Guo, Haibo
    Tang, Lingling
    Peng, Yuexing
    ENERGIES, 2019, 12 (20)