Using deep learning for short-term load forecasting

被引:30
作者
Bendaoud, Nadjib Mohamed Mehdi [1 ]
Farah, Nadir [1 ]
机构
[1] Univ Badji Mokhtar Annaba, Dept Comp Sci, Labged Lab, Annaba, Algeria
关键词
Short-term load forecasting; Convolutional Neural Network; Deep learning; Artificial intelligence; FUNCTION APPROXIMATION; REGRESSION; MODELS;
D O I
10.1007/s00521-020-04856-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Electricity is the most important source of energy that is exploited nowadays; it is essential for the economic development and the social stability, and this implies the need to model systems that keeps a perfect balance between supply and demand. This task depends heavily on identifying the factors that affect power consumption and improving the precision of the forecasted model. This paper presents a novel convolutional neural network (CNN) for short-term load forecasting (STLF); studies have been conducted to identify the different factors that affect the power consumption in Algeria (North Africa), and these studies helped to determine the inputs to the model. The proposed CNN uses a two-dimensional input unlike the conventional one-dimensional input used for STLF, and the results given by the CNN were compared to other artificial intelligence methods and demonstrated good results for both: one-quarter-ahead and 24-h-ahead forecast.
引用
收藏
页码:15029 / 15041
页数:13
相关论文
共 44 条
[1]   Statistical validation of daylength definitions for estimation of global solar radiation in Toledo, Spain [J].
Almorox, J ;
Hontoria, C ;
Benito, M .
ENERGY CONVERSION AND MANAGEMENT, 2005, 46 (9-10) :1465-1471
[2]  
[Anonymous], 1971, Search
[3]   A neural network short term load forecasting model for the Greek power system [J].
Bakirtzis, AG ;
Petridis, V ;
Klartzis, SJ ;
Alexiadis, MC ;
Maissis, AH .
IEEE TRANSACTIONS ON POWER SYSTEMS, 1996, 11 (02) :858-863
[4]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[5]  
Breiman L, 1984, CLASSIFICATION REGRE, P2
[6]   A Strategy for Short-Term Load Forecasting by Support Vector Regression Machines [J].
Ceperic, Ervin ;
Ceperic, Vladimir ;
Baric, Adrijan .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2013, 28 (04) :4356-4364
[7]  
Chen H, 2001, 2001 IEEE POWER ENGINEERING SOCIETY WINTER MEETING, CONFERENCE PROCEEDINGS, VOLS 1-3, P411, DOI 10.1109/PESW.2001.916876
[8]   SUPPORT-VECTOR NETWORKS [J].
CORTES, C ;
VAPNIK, V .
MACHINE LEARNING, 1995, 20 (03) :273-297
[9]   Building electrical energy consumption forecasting analysis using conventional and artificial intelligence methods: A review [J].
Daut, Mohammad Azhar Mat ;
Hassan, Mohammad Yusri ;
Abdullah, Hayati ;
Rahman, Hasimah Abdul ;
Abdullah, Md Pauzi ;
Hussin, Faridah .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 70 :1108-1118
[10]  
Drucker H, 1997, ADV NEUR IN, V9, P155