Least squares estimator for the parameter of the fractional Ornstein-Uhlenbeck sheet

被引:2
|
作者
Clarke De la Cerda, Jorge [2 ]
Tudor, Ciprian A. [1 ]
机构
[1] Univ Lille 1, Lab Paul Painleve, F-59655 Villeneuve Dascq, France
[2] Univ Concepcion, Dept Ingn Matemat, CI2MA, Concepcion, Chile
关键词
Fractional Brownian sheet; Parameter estimation; Multiple Wiener-Ito integrals; Strong consistency; STOCHASTIC INTEGRALS; RESPECT;
D O I
10.1016/j.jkss.2011.11.003
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We will study the least square estimator (theta) over cap (T,S) for the drift parameter theta of the fractional Ornstein-Uhlenbeck sheet which is defined as the solution of the Langevin equation X-t,X-s = -theta integral(t)(0) integral(s)(0) X(v,u)dvdu + B-t,s(alpha,beta) , (t, s) is an element of [0, T] x [0, S]. driven by the fractional Brownian sheet B-alpha,B-beta with Hurst parameters alpha, beta in (1/2, 5/8). Using the properties of multiple Wiener-Ito integrals we prove that the estimator is strongly consistent for the parameter theta. In contrast to the one-dimensional case, the estimator (theta) over cap (T,S) is not asymptotically normal. (c) 2011 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:341 / 350
页数:10
相关论文
共 50 条