On the profile of solutions with two sharp layers to a singularly perturbed semilinear Dirichlet problem

被引:35
作者
Dancer, EN [1 ]
Wei, JC [1 ]
机构
[1] CHINESE UNIV HONG KONG,DEPT MATH,SHATIN,HONG KONG
基金
澳大利亚研究理事会;
关键词
D O I
10.1017/S0308210500023775
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss the existence of positive solutions of some singularity perturbed elliptic equations on convex domains with nonlinearity changing sign. In particular, we obtain solutions with both a boundary layer and a sharp interior peak.
引用
收藏
页码:691 / 701
页数:11
相关论文
共 16 条
[1]   MULTIDIMENSIONAL NON-LINEAR DIFFUSION ARISING IN POPULATION-GENETICS [J].
ARONSON, DG ;
WEINBERGER, HF .
ADVANCES IN MATHEMATICS, 1978, 30 (01) :33-76
[2]  
CLEMENT P, 1987, ANN SCUOLA NORM SUP, V14, P97
[3]  
Dancer E. N., 1995, TOPOL METHOD NONL AN, V5, P141
[4]  
DANCER EN, 1986, P LOND MATH SOC, V53, P429
[5]  
DANCER EN, IN PRESS B LONDON MA
[6]  
DANCER EN, 1995, NOTE ASYMPTOTIC UNIQ
[7]   SYMMETRY AND RELATED PROPERTIES VIA THE MAXIMUM PRINCIPLE [J].
GIDAS, B ;
NI, WM ;
NIRENBERG, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 68 (03) :209-243
[8]  
Gidas B., 1981, Math Anal Appl, Part A: Advances in Math Suppl Studied, V7, P369
[9]  
Gilbar D., 1983, ELLIPTIC PARTIAL DIF
[10]   VARIATIONAL AND TOPOLOGICAL METHODS IN PARTIALLY ORDERED HILBERT-SPACES [J].
HOFER, H .
MATHEMATISCHE ANNALEN, 1982, 261 (04) :493-514