Modelling plankton ecosystems and the Library of Lotka

被引:9
作者
Cropp, Roger [1 ]
Norbury, John [2 ]
机构
[1] Griffith Univ, Atmospher Environm Res Ctr, Nathan, Qld 4111, Australia
[2] Univ Oxford, Inst Math, Oxford OX1 3LB, England
关键词
Library of Lotka; Ecosystem model; Dynamical system; Consistent normal ecologies; Emergent properties; Climate change; MARINE ECOSYSTEM; COEXISTENCE; MORTALITY;
D O I
10.1016/j.jmarsys.2012.08.005
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Predicting how change will impact ecosystems requires the development of complex models. The complexity of ecosystem models often defies the power of analytical mathematical techniques so they are commonly solved using computers. A problem with this approach is the difficulty in assessing the credibility of model simulation results. We apply ecological axioms to the construction of complex model ecologies. The axioms ensure realistic ecological properties and internal consistency of a broad class of models that encompass many theoretical and applied models. A key new analytical result for our dynamical systems in ecospace is that extinctions can be studied without knowledge of either interior equilibrium points or their stability. By looking only at boundary extinction points we can immediately comment on the extinction behaviour without solving for any of the dynamics. This is a striking simplification, and even holds when the dynamics are chaotic. We demonstrate the approach by constructing three plankton ecosystem models that we designed to have specific properties and show that the effect of change on plankton blooms and/or extinctions depends on the properties of the model chosen for the simulation. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:3 / 13
页数:11
相关论文
共 14 条
[1]  
Bloch W.G., 2011, UNIMAGINABLE MATH BO
[2]  
Borges JorgeLuis., 1941, Ficciones, P79
[3]   The Mechanisms of Coexistence and Competitive Exclusion in Complex Plankton Ecosystem Models [J].
Cropp, Roger ;
Norbury, John .
ECOSYSTEMS, 2012, 15 (02) :200-212
[4]   Constructing ecologies [J].
Cropp, Roger ;
Norbury, John .
JOURNAL OF THEORETICAL BIOLOGY, 2012, 294 :1-8
[5]   Zooplankton mortality and the dynamical behaviour of plankton population models [J].
Edwards, AM ;
Brindley, J .
BULLETIN OF MATHEMATICAL BIOLOGY, 1999, 61 (02) :303-339
[6]   The invisible niche: Weakly density-dependent mortality and the coexistence of species [J].
Gross, Thilo ;
Edwards, Andrew M. ;
Feudel, Ulrike .
JOURNAL OF THEORETICAL BIOLOGY, 2009, 258 (01) :148-155
[7]  
HUTCHINSON GE, 1961, AM NAT, V95, P137, DOI 10.1086/282171
[8]   NEMURO - a lower trophic level model for the North Pacific marine ecosystem [J].
Kishi, Michio J. ;
Kashiwai, Makoto ;
Ware, Daniel M. ;
Megrey, Bernard A. ;
Eslinger, David L. ;
Werner, Francisco E. ;
Noguchi-Aita, Maki ;
Azumaya, Tomonori ;
Fujii, Masahiko ;
Hashimoto, Shinji ;
Huang, Daji ;
Iizumi, Hitoshi ;
Ishida, Yukimasa ;
Kang, Sukyung ;
Kantakov, Gennady A. ;
Kim, Hyun-cheol ;
Komatsu, Kosei ;
Navrotsky, Vadim V. ;
Smith, S. Lan ;
Tadokoro, Kazuaki ;
Tsuda, Atsushi ;
Yamamura, Orio ;
Yamanaka, Yasuhiro ;
Yokouchi, Katsumi ;
Yoshie, Naoki ;
Zhang, Jing ;
Zuenko, Yury I. ;
Zvalinsky, Vladimir I. .
ECOLOGICAL MODELLING, 2007, 202 (1-2) :12-25
[9]  
Kot M., 2001, Elements of Mathematical Ecology
[10]   Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models [J].
Le Quéré, C ;
Harrison, SP ;
Prentice, IC ;
Buitenhuis, ET ;
Aumont, O ;
Bopp, L ;
Claustre, H ;
Da Cunha, LC ;
Geider, R ;
Giraud, X ;
Klaas, C ;
Kohfeld, KE ;
Legendre, L ;
Manizza, M ;
Platt, T ;
Rivkin, RB ;
Sathyendranath, S ;
Uitz, J ;
Watson, AJ ;
Wolf-Gladrow, D .
GLOBAL CHANGE BIOLOGY, 2005, 11 (11) :2016-2040