A note on power domination in grid graphs

被引:70
作者
Dorfling, M [1 ]
Henning, MA [1 ]
机构
[1] Univ KwaZulu Natal, Sch Math Sci, ZA-3209 Pietermaritzburg, South Africa
关键词
grid; power domination;
D O I
10.1016/j.dam.2005.08.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The problem of monitoring an electric power system by placing as few measurement devices in the system as possible is closely related to the well known vertex covering and dominating set problems in graphs (see [T.W. Haynes, S.M. Hedetniemi, S.T. Hedetniemi, M.A. Henning, Power domination in graphs applied to electrical power networks, SIAM J. Discrete Math. 15(4) (2002) 519-529]). A set S of vertices is defined to be a power dominating set of a graph if every vertex and every edge in the system is monitored by the set S (following a set of rules for power system monitoring). The minimum cardinality of a power dominating set of a graph is its power domination number. In this paper, we determine the power domination number of an n x m grid graph. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:1023 / 1027
页数:5
相关论文
共 9 条
[1]   POWER-SYSTEM OBSERVABILITY WITH MINIMAL PHASOR MEASUREMENT PLACEMENT [J].
BALDWIN, TL ;
MILI, L ;
BOISEN, MB ;
ADAPA, R .
IEEE TRANSACTIONS ON POWER SYSTEMS, 1993, 8 (02) :707-715
[2]  
BOISEN MB, 2000, UNPUB SIMULATED ANNE
[3]  
Brueni D. J., 1993, THESIS STATE U BLACK
[4]   THE DOMINATION NUMBERS OF THE 5XN AND 6XN GRID GRAPHS [J].
CHANG, TY ;
CLARK, WE .
JOURNAL OF GRAPH THEORY, 1993, 17 (01) :81-107
[5]  
Haynes T. W., 1998, FUNDAMENTALS DOMINAT
[6]  
Haynes T. W., 1998, FUNDAMENTALS DOMINAT
[7]   Domination in graphs applied to electric power networks [J].
Haynes, TW ;
Hedetniemi, SM ;
Hedetniemi, ST ;
Henning, MA .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2002, 15 (04) :519-529
[8]  
Jacobson M. S., 1984, I. Ars Combin., V18, P33
[9]  
Mili L., 1991, P EPRI NSF WORKSHOP