Using time-varying covariates in multilevel growth models

被引:61
作者
McCoach, D. Betsy [1 ]
Kaniskan, Burcu [1 ]
机构
[1] Univ Connecticut, Measurement Evaluat & Assessment Program, Dept Educ Psychol, Neag Sch Educ, Storrs, CT 06269 USA
来源
FRONTIERS IN PSYCHOLOGY | 2010年 / 1卷
关键词
hierarchical linear modeling; multilevel modeling; growth curve modeling/growth curve model(s); time varying covariates; coding; summer effects; time varying treatment effects;
D O I
10.3389/fpsyg.2010.00017
中图分类号
B84 [心理学];
学科分类号
04 ; 0402 ;
摘要
This article provides an illustration of growth curve modeling within a multilevel framework. Specifically, we demonstrate coding schemes that allow the researcher to model discontinuous longitudinal data using a linear growth model in conjunction with time-varying covariates. Our focus is on developing a level-1 model that accurately reflects the shape of the growth trajectory. We demonstrate the importance of adequately modeling the shape of the level-1 growth trajectory in order to make inferences about the importance of both level-1 and level-2 predictors.
引用
收藏
页数:12
相关论文
共 9 条
  • [1] [Anonymous], 1999, MULTILEVEL ANAL
  • [2] Bollen KA, 2006, WILEY SER PROBAB ST, P1
  • [3] de Leeuw J, 2004, J EDUC MEAS, V41, P73
  • [4] McCoach DB, 2008, QUANT METH EDUC BEHA, P245
  • [5] Raudenbush S., 2004, HLM6 HIERARCHICAL LI
  • [6] Raudenbush S. W., 2001, HIERARCHICAL LINEAR
  • [7] Reis S. M, 2010, USING SCHOOLWIDE ENR
  • [8] Singer D., 2003, APPL LONGITUDINAL DA
  • [9] Snijders T.A., 2017, HDB MULTILEVEL ANAL