The Monte Carlo wave-function method: A robust adaptive algorithm and a study in convergence

被引:8
作者
Kornyik, M. [1 ,2 ]
Vukics, A. [1 ]
机构
[1] Wigner Res Ctr Phys, POB 49, H-1525 Budapest, Hungary
[2] Eotvos Lorand Univ, Pazmany Peter Stny 1-C, H-1117 Budapest, Hungary
关键词
Monte Carlo wave function; Quantum jumps; Stochastic simulations; Open quantum systems; Markov approximation; Adaptive stepsize; !text type='PYTHON']PYTHON[!/text] FRAMEWORK; QUANTUM; DYNAMICS; EQUATIONS; QUTIP; JUMPS;
D O I
10.1016/j.cpc.2018.12.015
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a stepwise adaptive-timestep version of the Quantum Jump (Monte Carlo wave-function) algorithm. Our method has proved to remain robust even for problems where the integrating implementation of the Quantum Jump method is numerically problematic. The only specific parameter of our algorithm is the single a priory parameter of the Quantum Jump method, the maximal allowed total jump probability per timestep. We study the convergence of ensembles of trajectories to the solution of the full master equation as a function of this parameter. This study is expected to pertain to any possible implementation of the Quantum Jump method. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:88 / 101
页数:14
相关论文
共 37 条
[1]  
[Anonymous], 1994, Numerical solution of stochastic differential equations
[2]   STOCHASTIC DYNAMICS OF QUANTUM JUMPS [J].
BREUER, HP ;
PETRUCCIONE, F .
PHYSICAL REVIEW E, 1995, 52 (01) :428-441
[3]   Stochastic wave-function method versus density matrix: a numerical comparison [J].
Breuer, HP ;
Huber, W ;
Petruccione, F .
COMPUTER PHYSICS COMMUNICATIONS, 1997, 104 (1-3) :46-58
[4]   THE NUMERICAL STABILITY OF STOCHASTIC ORDINARY DIFFERENTIAL EQUATIONS WITH ADDITIVE NOISE [J].
Buckwar, E. ;
Riedler, M. G. ;
Kloeden, P. E. .
STOCHASTICS AND DYNAMICS, 2011, 11 (2-3) :265-281
[5]   Runge-Kutta methods for jump-diffusion differential equations [J].
Buckwar, Evelyn ;
Riedler, Martin G. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 236 (06) :1155-1182
[6]  
Clark J. M. C., 1980, STOCHASTIC DIFFERENT, P162
[7]   POSSIBILITY OF DIRECT OBSERVATION OF QUANTUM JUMPS [J].
COOK, RJ ;
KIMBLE, HJ .
PHYSICAL REVIEW LETTERS, 1985, 54 (10) :1023-1026
[8]   Quantum trajectories and open many-body quantum systems [J].
Daley, Andrew J. .
ADVANCES IN PHYSICS, 2014, 63 (02) :77-149
[9]   WAVE-FUNCTION APPROACH TO DISSIPATIVE PROCESSES IN QUANTUM OPTICS [J].
DALIBARD, J ;
CASTIN, Y ;
MOLMER, K .
PHYSICAL REVIEW LETTERS, 1992, 68 (05) :580-583
[10]   ORTHOGONAL JUMPS OF THE WAVEFUNCTION IN WHITE-NOISE POTENTIALS [J].
DIOSI, L .
PHYSICS LETTERS A, 1985, 112 (6-7) :288-292