Periodic kink-wave and kinky periodic-wave solutions for the Jimbo-Miwa equation

被引:59
作者
Dai, Zhengde [1 ,2 ]
Liu, Jun [3 ]
Zeng, Xiping [2 ]
Liu, Zhenjiang [3 ]
机构
[1] Yunnan Univ, Sch Math & Stat, Kunming 650091, Peoples R China
[2] Guangxi Inst Technol, Dept Informat & Comp Sci, Liuzhou 545005, Peoples R China
[3] Qujing Normal Univ, Dept Math, Qujing 655000, Peoples R China
关键词
periodic kink; soliton; kinky periodic-wave; bilinear form; mechanical feature;
D O I
10.1016/j.physleta.2008.07.064
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this Letter, by using a novel extended homoclinic test approach (EHTA) we obtain two new types of exact periodic solitary-wave and kinky periodic-wave solutions for Jimbo-Miwa equation. Moreover, we investigate the strangely mechanical features of wave solutions. These results enrich the variety of the dynamics of higher-dimensional nonlinear wave field. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:5984 / 5986
页数:3
相关论文
共 18 条
[1]   On the numerical solution of the sine-Gordon equation .1. Integrable discretizations and homoclinic manifolds [J].
Ablowitz, MJ ;
Herbst, BM ;
Schober, C .
JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 126 (02) :299-314
[2]  
Dai ZD, 2006, CHINESE PHYS LETT, V23, P1065, DOI 10.1088/0256-307X/23/5/001
[3]   Explicit homoclinic tube solutions and chaos for Zakharov system with periodic boundary [J].
Dai, ZD ;
Huang, J ;
Jiang, MR .
PHYSICS LETTERS A, 2006, 352 (4-5) :411-415
[4]  
Dai ZD, 2005, CHINESE J PHYS, V43, P349
[5]   Exact periodic solitary-wave solution for KdV equation [J].
Dai, Zheng-De ;
Liu, Zhen-Jiang ;
Li, Dong-Long .
CHINESE PHYSICS LETTERS, 2008, 25 (05) :1531-1533
[6]  
Dai ZD, 2007, CHINESE PHYS LETT, V24, P1429, DOI 10.1088/0256-307X/24/6/001
[7]   Exact cross kink-wave solutions and resonance for the Jimbo-Miwa equation [J].
Dai, Zhengde ;
Li, Zitian ;
Liu, Zhenjiang ;
Li, Donglong .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 384 (02) :285-290
[8]   Singular periodic soliton solutions and resonance for the Kadomtsev-Petviashvili equation [J].
Dai, Zhengde ;
Li, Shaolin ;
Dai, Qingyun ;
Huang, Jian .
CHAOS SOLITONS & FRACTALS, 2007, 34 (04) :1148-1153
[9]  
HIROTA R, 1971, PHYS LETT A, V277, P1192
[10]   EXACT-SOLUTIONS FOR SOME COUPLED NONLINEAR EQUATIONS .2. [J].
HUIBIN, L ;
KELIN, W .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (18) :4097-4105