Scoring by nonlocal image patch estimator for early detection of Alzheimer's disease

被引:92
作者
Coupe, Pierrick [1 ,2 ]
Eskildsen, Simon F. [2 ,3 ]
Manjon, Jose V. [4 ]
Fonov, Vladimir S. [2 ]
Pruessner, Jens C. [7 ,8 ]
Allard, Michele [5 ,6 ]
Collins, D. Louis [2 ]
机构
[1] CNRS, Unite Mixte Rech, UMR 5800, Lab Bordelais Rech Informat, Bordeaux, France
[2] McGill Univ, Montreal Neurol Inst, McConnell Brain Imaging Ctr, Montreal, PQ H3A 2B4, Canada
[3] Aarhus Univ, Ctr Funct Integrat Neurosci, Aarhus, Denmark
[4] Univ Politecn Valencia, Inst Aplicac Tecnol Informac & Comunicac Avanzada, E-46022 Valencia, Spain
[5] Univ Bordeaux, INCIA, UMR 5287, F-33400 Talence, France
[6] CNRS, INCIA, UMR 5287, F-33400 Talence, France
[7] McGill Univ, Dept Psychiat & Neurol, Montreal, PQ, Canada
[8] McGill Univ, Dept Neurosurg, Montreal, PQ H3A 2T5, Canada
基金
美国国家卫生研究院;
关键词
Scoring; Grading; Hippocampus; Entorhinal cortex; Patient's classification; Nonlocal means estimator; Alzheimer's disease; Early detection; MILD COGNITIVE IMPAIRMENT; HIPPOCAMPAL ATROPHY; AMYLOID DEPOSITION; MR-IMAGES; CLASSIFICATION; SEGMENTATION; PATTERNS; BETA; REGISTRATION; MORPHOMETRY;
D O I
10.1016/j.nicl.2012.10.002
中图分类号
R445 [影像诊断学];
学科分类号
100207 ;
摘要
Detection of Alzheimer's disease (AD) at the first stages of the pathology is an important task to accelerate the development of new therapies and improve treatment. Compared to AD detection, the prediction of AD using structural MRI at the mild cognitive impairment (MCI) or pre-MCI stage is more complex because the associated anatomical changes are more subtle. In this study, we analyzed the capability of a recently proposed method, SNIPE (Scoring by Nonlocal Image Patch Estimator), to predict AD by analyzing entorhinal cortex (EC) and hippocampus (HC) scoring over the entire ADNI database (834 scans). Detection (AD vs. CN) and prediction (progressive - pMCI vs. stable - sMCI) efficiency of SNIPE were studied using volumetric and grading biomarkers. First, our results indicate that grading-based biomarkers are more relevant for prediction than volume-based biomarkers. Second, we show that HC-based biomarkers are more important than EC-based biomarkers for prediction. Third, we demonstrate that the results obtained by SNIPE are similar to or better than results obtained in an independent study using HC volume, cortical thickness, and tensor-based morphometry, individually and in combination. Fourth, a comparison of new patch-based methods shows that the nonlocal redundancy strategy involved in SNIPE obtained similar results to a new local sparse-based approach. Finally, we present the first results of patch-based morphometry to illustrate the progression of the pathology. (C) 2012 The Authors. Published by Elsevier Inc. Open access under CC BY-NC-ND license.
引用
收藏
页码:141 / 152
页数:12
相关论文
共 60 条
[1]   Frequent Amyloid Deposition Without Significant Cognitive Impairment Among the Elderly [J].
Aizenstein, Howard Jay ;
Nebes, Robert D. ;
Saxton, Judith A. ;
Price, Julie C. ;
Mathis, Chester A. ;
Tsopelas, Nicholas D. ;
Ziolko, Scott K. ;
James, Jeffrey A. ;
Snitz, Beth E. ;
Houck, Patricia R. ;
Bi, Wenzhu ;
Cohen, Ann D. ;
Lopresti, Brian J. ;
DeKosky, Steven T. ;
Halligan, Edythe M. ;
Klunk, William E. .
ARCHIVES OF NEUROLOGY, 2008, 65 (11) :1509-1517
[2]   Prodromal Alzheimer's Disease: Successive Emergence of the Clinical Symptoms [J].
Amieva, Helene ;
Le Goff, Melanie ;
Millet, Xavier ;
Orgogozo, Jean Marc ;
Peres, Karine ;
Barberger-Gateau, Pascale ;
Jacqmin-Gadda, Helene ;
Dartigues, Jean Francois .
ANNALS OF NEUROLOGY, 2008, 64 (05) :492-498
[3]   3D comparison of hippocampal atrophy in amnestic mild cognitive impairment and Alzheimer's disease [J].
Apostolova, Liana G. ;
Dinov, Ivo D. ;
Dutton, Rebecca A. ;
Hayashi, Kiralee M. ;
Toga, Arthur W. ;
Cummings, Jeffrey L. ;
Thompson, Paul M. .
BRAIN, 2006, 129 :2867-2873
[4]   Voxel-based morphometry - The methods [J].
Ashburner, J ;
Friston, KJ .
NEUROIMAGE, 2000, 11 (06) :805-821
[5]   Associative memory deficits in mild cognitive impairment: The role of hippocampal formation [J].
Atienza, M. ;
Atalaia-Silva, K. C. ;
Gonzalez-Escamilla, G. ;
Gil-Neciga, E. ;
Suarez-Gonzalez, A. ;
Cantero, J. L. .
NEUROIMAGE, 2011, 57 (04) :1331-1342
[6]   Nonpharmacological Treatment of Alzheimer Disease [J].
Ballard, Clive ;
Khan, Zunera ;
Clack, Hannah ;
Corbett, Anne .
CANADIAN JOURNAL OF PSYCHIATRY-REVUE CANADIENNE DE PSYCHIATRIE, 2011, 56 (10) :589-595
[7]   NEUROPATHOLOGICAL STAGING OF ALZHEIMER-RELATED CHANGES [J].
BRAAK, H ;
BRAAK, E .
ACTA NEUROPATHOLOGICA, 1991, 82 (04) :239-259
[8]   Fast exact leave-one-out cross-validation of sparse least-squares support vector machines [J].
Cawley, GC ;
Talbot, NLC .
NEURAL NETWORKS, 2004, 17 (10) :1467-1475
[9]   Relationship between Atrophy and β-Amyloid Deposition in Alzheimer Disease [J].
Chetelat, Gael ;
Villemagne, Victor L. ;
Bourgeat, Pierrick ;
Pike, Kerryn E. ;
Jones, Gareth ;
Ames, David ;
Ellis, Kathryn A. ;
Szoeke, Cassandra ;
Martins, Ralph N. ;
O'Keefe, Graeme J. ;
Salvado, Olivier ;
Masters, Colin L. ;
Rowe, Christopher C. .
ANNALS OF NEUROLOGY, 2010, 67 (03) :317-324
[10]   Individual subject classification for Alzheimer's disease based on incremental learning using a spatial frequency representation of cortical thickness data [J].
Cho, Youngsang ;
Seong, Joon-Kyung ;
Jeong, Yong ;
Shin, Sung Yong .
NEUROIMAGE, 2012, 59 (03) :2217-2230