Avidin-biotin interactions at vesicle surfaces: Adsorption and binding, cross-bridge formation, and lateral interactions

被引:122
作者
NopplSimson, DA [1 ]
Needham, D [1 ]
机构
[1] DUKE UNIV,DEPT MECH ENGN & MAT SCI,DURHAM,NC 27708
关键词
D O I
10.1016/S0006-3495(96)79697-2
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Densely packed domains of membrane proteins are important structures in cellular processes that involve ligand-receptor binding, receptor-mediated adhesion, and macromolecule aggregation. We have used the biotin-avidin interaction at lipid vesicle surfaces to mimic these processes, including the influence of a surface grafted polymer, polyethyleneglycol (PEG). Single vesicles were manipulated by micropipette in solutions of fluorescently labeled avidin to measure the rate and give an estimate of the amount of avidin binding to a biotinylated vesicle as a function of surface biotin concentration and surface-grafted PEG as PEG-lipid. The rate of avidin adsorption was found to be four times less with 2 mol% PEG(750) than for the unmodified surface, and 10 mol% PEG completely inhibited binding of avidin to biotin for a 2-min incubation. Using two micropipettes, an avidin-coated vesicle was presented to a biotinylated vesicle, In this vesicle-vesicle adhesion test, the accumulation of avidin in the contact zone was observed, again by using fluorescent avidin. More importantly, by controlling the vesicle membrane tension, this adhesion test provided a direct measure of the spreading pressure of the biotin-avidin-biotin cross-bridges confined in the contact zone. Assuming ideality, this spreading pressure gives the concentration of avidin cross-bridges in the contact zone. The rate of cross-bridge accumulation was consistent with the diffusion of the lipid-linked ''receptors'' into the contact zone. Once adherent, the membranes failed in tension before they could be peeled apart. PEG(750) did not influence the mechanical equilibrium because it was not compressed in the contact zone, but it did perform an important function by eliminating all nonspecific adhesion. This vesicle-vesicle adhesion experiment, with a lower tension limit of 0.01 dyn/cm, now provides a new and useful method with which to measure the spreading pressures and therefore colligative properties of a range of membrane-bound macromolecules.
引用
收藏
页码:1391 / 1401
页数:11
相关论文
共 34 条
[1]  
Alberts B., 1994, MOL BIOL CELL
[2]  
Andrade J.D., 1985, SURFACE INTERFACIAL
[3]   CELL-ADHESION - COMPETITION BETWEEN NONSPECIFIC REPULSION AND SPECIFIC BONDING [J].
BELL, GI ;
DEMBO, M ;
BONGRAND, P .
BIOPHYSICAL JOURNAL, 1984, 45 (06) :1051-1064
[4]  
BELL GI, 1978, SCIENCE, V200, P618, DOI 10.1126/science.347575
[5]   DETACHMENT OF AGGLUTININ-BONDED RED-BLOOD-CELLS .3. MECHANICAL ANALYSIS FOR LARGE CONTACT AREAS [J].
BERK, D ;
EVANS, E .
BIOPHYSICAL JOURNAL, 1991, 59 (04) :861-872
[6]  
BONGRAND P, 1988, PHYSICAL BASIS CELL
[7]   SITE-DIRECTED MUTAGENESIS STUDIES OF THE HIGH-AFFINITY STREPTAVIDIN-BIOTIN COMPLEX - CONTRIBUTIONS OF TRYPTOPHAN RESIDUE-79, RESIDUE-108, AND RESIDUE-120 [J].
CHILKOTI, A ;
TAN, PH ;
STAYTON, PS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (05) :1754-1758
[8]   THE REACTION-LIMITED KINETICS OF MEMBRANE-TO-SURFACE ADHESION AND DETACHMENT [J].
DEMBO, M ;
TORNEY, DC ;
SAXMAN, K ;
HAMMER, D .
PROCEEDINGS OF THE ROYAL SOCIETY SERIES B-BIOLOGICAL SCIENCES, 1988, 234 (1274) :55-83
[9]   ROTATIONAL AND TRANSLATIONAL DIFFUSION IN MEMBRANES [J].
EDIDIN, M .
ANNUAL REVIEW OF BIOPHYSICS AND BIOENGINEERING, 1974, 3 :179-201
[10]   FREE-ENERGY POTENTIAL FOR AGGREGATION OF MIXED PHOSPHATIDYLCHOLINE PHOSPHATIDYLSERINE LIPID VESICLES IN GLUCOSE POLYMER (DEXTRAN) SOLUTIONS [J].
EVANS, E ;
METCALFE, M .
BIOPHYSICAL JOURNAL, 1984, 45 (04) :715-720