Perturbation of the Lyapunov spectra of periodic orbits

被引:21
作者
Bochi, J. [1 ]
Bonatti, C. [2 ]
机构
[1] PUC, Dept Matemat, BR-22453900 Rio De Janeiro, RJ, Brazil
[2] Univ Bourgogne, IMB, F-21078 Dijon, France
关键词
HYPERBOLICITY;
D O I
10.1112/plms/pdr048
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe all Lyapunov spectra that can be obtained by perturbing the derivatives along periodic orbits of a diffeomorphism. The description is expressed in terms of the finest dominated splitting and Lyapunov exponents that appear in the limit of a sequence of periodic orbits, and involves the majorization partial order. Among the applications, we give a simple criterion for the occurrence of universal dynamics.
引用
收藏
页码:1 / 48
页数:48
相关论文
共 20 条
[1]   Periodic points and homoclinic classes [J].
Abdenur, F. ;
Bonatti, Ch. ;
Crovisier, S. ;
Diaz, L. J. ;
Wen, L. .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2007, 27 :1-22
[2]   NONUNIFORM HYPERBOLICITY FOR C1-GENERIC DIFFEOMORPHISMS [J].
Abdenur, Flavio ;
Bonatti, Christian ;
Crovisier, Sylvain .
ISRAEL JOURNAL OF MATHEMATICS, 2011, 183 (01) :1-60
[3]  
[Anonymous], 1998, MULTIPLICATIVE ERGOD, DOI DOI 10.1007/978-3-662-12878-7_4
[4]   Opening gaps in the spectrum of strictly ergodic Schrodinger operators [J].
Avila, Artur ;
Bochi, Jairo ;
Damanik, David .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2012, 14 (01) :61-106
[5]   The Lyapunov exponents of generic volume-preserving and symplectic maps [J].
Bochi, J ;
Viana, M .
ANNALS OF MATHEMATICS, 2005, 161 (03) :1423-1485
[6]   Recurrence and genericty [J].
Bonatti, C ;
Crovisier, S .
INVENTIONES MATHEMATICAE, 2004, 158 (01) :33-104
[7]   A C1-generic dichotomy for diffeomorphisms:: Weak forms of hyperbolicity or infinitely many sinks or sources [J].
Bonatti, C ;
Díaz, LJ ;
Pujals, ER .
ANNALS OF MATHEMATICS, 2003, 158 (02) :355-418
[8]  
BONATTI C., 2009, ARXIV09044393
[9]  
Bonatti C., 2005, Dynamics Beyond Uniform Hyperbolicity
[10]  
Bonatti C., 2002, Publ. Math. Inst. Hautes Etudes Sci, V96, P171