Effective orbital symmetry of CuO: Examination by nonresonant inelastic x-ray scattering

被引:9
|
作者
Wu, W. B. [1 ]
Hiraoka, N. [1 ]
Huang, D. J. [1 ]
Huang, S. W. [1 ]
Tsuei, K. D. [1 ]
van Veenendaal, Michel [2 ,3 ]
van den Brink, Jeroen [4 ]
Sekio, Y. [5 ]
Kimura, T. [5 ]
机构
[1] Natl Synchrotron Radiat Res Ctr, Hsinchu 30076, Taiwan
[2] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA
[3] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA
[4] IFW Dresden, Inst Theoret Solid State Phys, D-01069 Dresden, Germany
[5] Osaka Univ, Div Mat Phys, Grad Sch Engn Sci, Osaka, Japan
关键词
ELECTRONIC-STRUCTURE; EXCITATIONS; EDGE;
D O I
10.1103/PhysRevB.88.205129
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We report on measurements of nonresonant inelastic x-ray scattering (NIXS) to unravel the effective symmetry of Cu 3d orbitals in the ground state of CuO. A clear feature of energy loss at about 2 eV exists in the NIXS spectrum, arising from dd excitations; the intensities of these excitations display a pronounced anisotropy. The comparison between the measured angular distributions of scattering and those from theoretical predictions by the tesseral harmonics indicates that, in terms of a hole picture, the lowest-energy dd excitation is the orbital transition x(2) - y(2) -> xy. In addition, the transition x(2) - y(2) -> 3z(2) - r(2) has an energy higher than x(2) - y(2) -> yz/zx, in contrast to a previous interpretation. Our results imply a large Jahn-Teller-like splitting between x(2) - y(2) and 3z(2) - r(2) orbitals. The theory assuming a C-4h symmetry explains the angular dependence of the NIXS spectra fairly well, implying that this symmetry is a reasonable approximation. This demonstrates that NIXS can provide important information for modeling of the electronic structure of d ions embedded in a complicated crystal field.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Polarization of nonresonant inelastic x-ray scattering
    Aberg, T.
    Heinasmaki, S.
    1997, IOP, Bristol, United Kingdom (30)
  • [2] Polarization of nonresonant inelastic x-ray scattering
    Aberg, T
    Heinasmaki, S
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 1997, 30 (21) : 4827 - 4837
  • [3] Effective operator for d-d transitions in nonresonant inelastic x-ray scattering
    van Veenendaal, Michel
    Haverkort, M. W.
    PHYSICAL REVIEW B, 2008, 77 (22)
  • [4] Interference between Resonant and Nonresonant Inelastic X-Ray Scattering
    Sun, Y. -P.
    Miao, Q.
    Pietzsch, A.
    Hennies, F.
    Schmitt, T.
    Strocov, V. N.
    Andersson, J.
    Kennedy, B.
    Schlappa, J.
    Foehlisch, A.
    Gel'mukhanov, F.
    Rubensson, J. -E.
    PHYSICAL REVIEW LETTERS, 2013, 110 (22)
  • [5] Transuranium compounds probed by nonresonant inelastic x-ray scattering
    Sundermann, M.
    Simonelli, L.
    Huotari, S.
    Eloirdi, R.
    Lander, G. H.
    Caciuffo, R.
    van der Laan, G.
    PHYSICAL REVIEW B, 2020, 101 (07)
  • [6] Nonresonant inelastic x-ray scattering from actinides and rare earths
    van der Laan, G.
    PHYSICAL REVIEW B, 2012, 86 (03):
  • [7] Symmetry selective resonant inelastic X-ray scattering
    Phys B Condens Matter, 1-4 (105):
  • [8] Orbital-selective electronic excitations in iron arsenides revealed by simulated nonresonant inelastic x-ray scattering
    Tsutsui, Kenji
    Kaneshita, Eiji
    Tohyama, Takami
    PHYSICAL REVIEW B, 2015, 92 (19):
  • [9] A pressure cell for nonresonant inelastic x-ray scattering studies of gas phases
    Minzer, M.
    Bradley, J. A.
    Musgrave, R.
    Seidler, G. T.
    Skilton, A.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2008, 79 (08):
  • [10] Nonresonant inelastic x-ray scattering involving excitonic excitations: The examples of NiO and CoO
    Haverkort, M. W.
    Tanaka, A.
    Tjeng, L. H.
    Sawatzky, G. A.
    PHYSICAL REVIEW LETTERS, 2007, 99 (25)