Employing a Bifunctional Molybdate Precursor To Grow the Highly Crystalline MoS2 for High-Performance Field-Effect Transistors

被引:10
作者
Tong, Shi Wun [1 ]
Medina, Henry [1 ]
Liao, Wugang [2 ,3 ]
Wu, Jing [1 ]
Wu, Wenya [1 ]
Chai, Jianwei [1 ]
Yang, Ming [1 ]
Abutaha, Anas [1 ]
Wang, Shijie [1 ]
Zhu, Chunxiang [3 ]
Hippalgaonkar, Kedar [1 ]
Chi, Dongzhi [1 ]
机构
[1] Agcy Sci Technol & Res, Inst Mat Res & Engn, 2 Fusionopolis Way,08-03 Innovis, Singapore 138634, Singapore
[2] Shenzhen Univ, Coll Elect Sci & Technol, Shenzhen 518060, Peoples R China
[3] Natl Univ Singapore, Dept Elect & Comp Engn, 4 Engn Dr 3, Singapore 117583, Singapore
关键词
molybdenum disulfide; molybdate precursor; seed promotor; field-effect transistor; thermoelectric;
D O I
10.1021/acsami.9b01444
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Growth of the large-sized and high-quality MoS2 single crystals for high-performance low-power electronic applications is an important step to pursue. Despite the significant improvement made in minimizing extrinsic MoS2 contact resistance based on interfacial engineering of the devices, the electron mobility of field-effect transistors (FETs) made of a synthetic monolayer MoS2 is yet far below the expected theoretical values, implying that the MoS2 crystal quality needs to be further improved. Here, we demonstrate the high-performance two-terminal MoS2 FETs with room-temperature electron mobility up to similar to 90 cm(2) V-1 s(-1) based on the sulfurization growth of the bifunctional precursor, sodium molybdate dihydrate. This unique transition-metal precursor, serving as both the crystalline Mo source and seed promotor (sodium), could facilitate the lateral growth of the highly crystalline monolayer MoS2 crystals (edge length up to similar to 260 mu m). Substrate surface treatment with oxygen plasma prior to the deposition of the Mo precursor is fundamental to increase the wettability between the Mo source and the substrate, promoting the thinning and coalescence of the source clusters during the growth of large-sized MoS2 single crystals. The control of growth temperature is also an essential step to grow a strictly monolayer MoS2 crystal. A proof-of-concept for thermoelectric device integration utilizing monolayer MoS2 sheds light on its potential in low-voltage and self-powered electronics.
引用
收藏
页码:14239 / 14248
页数:10
相关论文
共 59 条
  • [1] Salahuddin S., Ni K., Datta S., The era of hyper-scaling in electronics, Nat. Electron., 1, pp. 442-450, (2018)
  • [2] Del Alamo J.A., Nanometre-scale electronics with III-V compound semiconductors, Nature, 479, pp. 317-323, (2011)
  • [3] Cao Q., Tersoff J., Farmer D.B., Zhu Y., Han S.-J., Carbon nanotube transistors scaled to a 40-nanometer footprint, Science, 356, pp. 1369-1372, (2017)
  • [4] Kaasbjerg K., Thygesenis K.S., Jacobsen K.W., Phonon-limited mobility in n-type single-layer MoS <sub>2</sub> from first principles , Phys. Rev. B: Condens. Matter Mater. Phys., 85, (2012)
  • [5] Mak K.F., Lee C., Hone J., Shan J., Heinz T.F., Atomically Thin MoS <sub>2</sub> : A New Direct-Gap Semiconductor , Phys. Rev. Lett., 105, (2010)
  • [6] Castellanos-Gomez A., Barkelid M., Goossens A.M., Calado V.E., Van Der Zant H.S.J., Steele G.A., Laser-thinning of MoS <sub>2</sub> : On demand generation of a single layer Semiconductor , Nano Lett., 12, pp. 3187-3192, (2012)
  • [7] Radisavljevic B., Radenovic A., Brivio J., Giacometti V., Kis A., Single-layer MoS <sub>2</sub> transistors , Nat. Nanotechnol., 6, pp. 147-150, (2011)
  • [8] Zhang F., Appenzeller J., Tunability of Short-Channel Effects in MoS <sub>2</sub> Field-Effect Devices , Nano Lett., 15, pp. 301-306, (2015)
  • [9] Fiori G., Bonaccorso F., Iannaccone G., Palacios T., Neumaier D., Seabaugh A., Banerjee S.K., Colombo L., Electronics based on two-dimensional materials, Nat. Nanotechnol., 9, pp. 768-779, (2014)
  • [10] Kim H., Kim W., O'Brien M., McEvoy N., Yim C., Marcia M., Hauke F., Hirsch A., Kim G.-T., Duesberg G.S., Optimized single-layer MoS <sub>2</sub> field-effect transistors by non-covalent functionalisation , Nanoscale, 10, pp. 17557-17566, (2018)