High Throughput Quantitative Metallography for Complex Microstructures Using Deep Learning: A Case Study in Ultrahigh Carbon Steel

被引:144
作者
DeCost, Brian L. [1 ]
Lei, Bo [2 ]
Francis, Toby [2 ]
Holm, Elizabeth A. [2 ]
机构
[1] NIST, Mat Measurement Lab, Gaithersburg, MD 20899 USA
[2] Carnegie Mellon Univ, Mat Sci & Engn, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会;
关键词
deep learning; microstructure; segmentation; steel; IMAGE; NETWORKS;
D O I
10.1017/S1431927618015635
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We apply a deep convolutional neural network segmentation model to enable novel automated microstructure segmentation applications for complex microstructures typically evaluated manually and subjectively. We explore two microstructure segmentation tasks in an openly available ultrahigh carbon steel microstructure dataset: segmenting cementite particles in the spheroidized matrix, and segmenting larger fields of view featuring grain boundary carbide, spheroidized particle matrix, particle-free grain boundary denuded zone, and Widmanstatten cementite. We also demonstrate how to combine these data-driven microstructure segmentation models to obtain empirical cementite particle size and denuded zone width distributions from more complex micrographs containing multiple microconstituents. The full annotated dataset is available on materialsdata.nist.gov.
引用
收藏
页码:21 / 29
页数:9
相关论文
共 40 条
  • [21] DeCost Brian., 2018, Ultrahigh Carbon Steel Microconstituent Annotations
  • [22] Exploring the microstructure manifold: Image texture representations applied to ultrahigh carbon steel microstructures
    DeCost, Brian L.
    Francis, Toby
    Holm, Elizabeth A.
    [J]. ACTA MATERIALIA, 2017, 133 : 30 - 40
  • [23] UHCSDB: UltraHigh Carbon Steel Micrograph DataBase Tools for Exploring Large Heterogeneous Microstructure Datasets
    DeCost, Brian L.
    Hecht, Matthew D.
    Francis, Toby
    Webler, Bryan A.
    Picard, Yoosuf N.
    Holm, Elizabeth A.
    [J]. INTEGRATING MATERIALS AND MANUFACTURING INNOVATION, 2017, 6 (02) : 197 - 205
  • [24] A computer vision approach for automated analysis and classification of microstructural image data
    DeCost, Brian L.
    Holm, Elizabeth A.
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2015, 110 : 126 - 133
  • [25] Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1
  • [26] THE DEFORMATION AND AGEING OF MILD STEEL .3. DISCUSSION OF RESULTS
    HALL, EO
    [J]. PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON SECTION B, 1951, 64 (381): : 747 - 753
  • [27] He K., 2015, IEEE I CONF COMP VIS, P1026, DOI DOI 10.1109/ICCV.2015.123
  • [28] Digital image analysis to quantify carbide networks in ultrahigh carbon steels
    Hecht, Matthew D.
    Webler, Bryan A.
    Picard, Yoosuf N.
    [J]. MATERIALS CHARACTERIZATION, 2016, 117 : 134 - 143
  • [29] PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization
    Kendall, Alex
    Grimes, Matthew
    Cipolla, Roberto
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 2938 - 2946
  • [30] THE KOLMOGOROV-SMIRNOV TEST FOR GOODNESS OF FIT
    MASSEY, FJ
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1951, 46 (253) : 68 - 78