High Throughput Quantitative Metallography for Complex Microstructures Using Deep Learning: A Case Study in Ultrahigh Carbon Steel

被引:144
作者
DeCost, Brian L. [1 ]
Lei, Bo [2 ]
Francis, Toby [2 ]
Holm, Elizabeth A. [2 ]
机构
[1] NIST, Mat Measurement Lab, Gaithersburg, MD 20899 USA
[2] Carnegie Mellon Univ, Mat Sci & Engn, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会;
关键词
deep learning; microstructure; segmentation; steel; IMAGE; NETWORKS;
D O I
10.1017/S1431927618015635
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We apply a deep convolutional neural network segmentation model to enable novel automated microstructure segmentation applications for complex microstructures typically evaluated manually and subjectively. We explore two microstructure segmentation tasks in an openly available ultrahigh carbon steel microstructure dataset: segmenting cementite particles in the spheroidized matrix, and segmenting larger fields of view featuring grain boundary carbide, spheroidized particle matrix, particle-free grain boundary denuded zone, and Widmanstatten cementite. We also demonstrate how to combine these data-driven microstructure segmentation models to obtain empirical cementite particle size and denuded zone width distributions from more complex micrographs containing multiple microconstituents. The full annotated dataset is available on materialsdata.nist.gov.
引用
收藏
页码:21 / 29
页数:9
相关论文
共 40 条
  • [1] [Anonymous], 2015, IEEE C COMP VIS PATT
  • [2] [Anonymous], P 3 INT C LEARNING R
  • [3] [Anonymous], ULTRAHIGH CARBON STE
  • [4] [Anonymous], 2015, ARXIV PREPRINT ARXIV
  • [5] [Anonymous], 2015, Nature, DOI [10.1038/nature14539, DOI 10.1038/NATURE14539]
  • [6] [Anonymous], METALLURGICAL MAT A
  • [7] [Anonymous], 2016, 100 LAYERS TIRAMISU
  • [8] [Anonymous], INFERRING LOW DIMENS
  • [9] [Anonymous], 2017, FIXING WEIGHT DECAY
  • [10] [Anonymous], 2015, PROC CVPR IEEE