Dislocation formation during laser processing of silicon solar cell materials

被引:4
作者
Weng, Y. [1 ]
Kedjar, B. [2 ]
Ohmer, K. [3 ]
Koehler, J. R. [3 ]
Werner, J. H. [3 ]
Strunk, H. P. [1 ]
机构
[1] Univ Stuttgart, Inst Mat Sci, Chair Mat Phys, Heisenbergstr 3, D-70569 Stuttgart, Germany
[2] Max Planck Inst Intelligent Syst, Stuttgart Ctr Electron Microscopy, D-70569 Stuttgart, Germany
[3] Univ Stuttgart, Inst Photovolta, D-70569 Stuttgart, Germany
来源
PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 10, NO 1 | 2013年 / 10卷 / 01期
关键词
laser processing; dislocation formation; silicon solar cells; transmission electron microscopy;
D O I
10.1002/pssc.201200548
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Laser processing, increasingly used for solar cell production, induces defects when choosing inappropriate process parameters. Besides the shape and the pulse energy of the laser, also the surface orientation of silicon substrate has a great influence on the defect formation. By applying a laser beam with a line focus exceeding the critical values such as line width and laser pulse energy, the development of dislocations is observed on (111)oriented wafers by transmission electron microscopy (TEM). As a result, the formed dislocations are arranged practically parallel to each other in planes parallel to the (111) surface. Their Burgers vectors lie within this plane too. Thus classical concepts of epitaxy hardly explain the dislocation formation. Alternative explanations have to take into account the excessively high temperature close to the melting point, the short time frames given by the laser pulse duration (100 ns) and the not yet analyzed inhomogeneous stress distribution. (C) 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:28 / 31
页数:4
相关论文
共 8 条
[1]   SLIP DISLOCATION FORMATION DURING CW LASER ANNEALING OF SILICON [J].
BAUMGART, H ;
PHILLIPP, F ;
ROZGONYI, GA ;
GOSELE, U .
APPLIED PHYSICS LETTERS, 1981, 38 (02) :95-97
[2]   CONVERGENT BEAM DIFFRACTION STUDIES OF INTERFACES, DEFECTS, AND MULTILAYERS [J].
CHERNS, D ;
PRESTON, AR .
JOURNAL OF ELECTRON MICROSCOPY TECHNIQUE, 1989, 13 (02) :111-122
[3]   18.9% efficient full area laser doped silicon solar cell [J].
Eisele, S. J. ;
Roeder, T. C. ;
Koehler, J. R. ;
Werner, J. H. .
APPLIED PHYSICS LETTERS, 2009, 95 (13)
[4]   ACCOMMODATION OF MISFIT ACROSS INTERFACE TEBWEEN CRYSTALS OF SEMICONDUCTING ELEMENTS OR COMPOUNDS [J].
MATTHEWS, JW ;
MADER, S ;
LIGHT, TB .
JOURNAL OF APPLIED PHYSICS, 1970, 41 (09) :3800-&
[5]   Defect Formation in Silicon During Laser Doping [J].
Ohmer, Kathrin ;
Weng, Ye ;
Koehler, Juergen R. ;
Strunk, Horst P. ;
Werner, Juergen H. .
IEEE JOURNAL OF PHOTOVOLTAICS, 2011, 1 (02) :183-186
[6]   Add-on laser tailored selective emitter solar cells [J].
Roeder, T. C. ;
Eisele, S. J. ;
Grabitz, P. ;
Wagner, C. ;
Kulushich, G. ;
Koehler, J. R. ;
Werner, J. H. .
PROGRESS IN PHOTOVOLTAICS, 2010, 18 (07) :505-510
[7]   DIFFUSION-INDUCED DISLOCATIONS IN SILICON [J].
WASHBURN, J ;
THOMAS, G .
JOURNAL OF APPLIED PHYSICS, 1964, 35 (06) :1909-&
[8]  
Weertman J., 1992, ELEMENTARY DISLOCATI, P13