Effects of temperature and load on the creep performance of CNT reinforced laminated glass fiber/epoxy composites

被引:44
作者
Anand, Abhijeet [1 ]
Banerjee, Poulami [1 ]
Sahoo, Debaraj [1 ]
Rathore, Dinesh Kumar [2 ]
Prusty, Rajesh Kumar [1 ]
Ray, Bankim Chandra [1 ]
机构
[1] Natl Inst Technol, Composite Mat Grp, Met & Mat Engn Dept, Rourkela 769008, India
[2] KIIT Univ, Sch Mech Engn, Bhubaneswar 751024, Odisha, India
关键词
Laminated composites; Fiber reinforced polymer composites; Carbon nanotubes; Functionalization; Creep; Interface/interphase; WALLED CARBON NANOTUBES; POLYMERIC COMPOSITES; FRACTURE-TOUGHNESS; EPOXY COMPOSITES; BEHAVIOR; RECOVERY; NANOCOMPOSITES; ENVIRONMENTS; DEPENDENCE; DISPERSION;
D O I
10.1016/j.ijmecsci.2018.09.048
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Present study aims at evaluation of creep properties of glass fiber/epoxy (GE) composite, and GE composites modified with 0.1 wt.% pristine carbon nanotube (PCNT-GE) and 0.1 wt.% oxidized carbon nanotube (OCNT-GE) under varied temperatures (50 degrees C, 80 degrees C, 110 degrees C). Further, creep behavior has also been elucidated with different loads at 110 degrees C. Burger's model has been incorporated to predict the creep response of the composites. Results indicate that at lower temperature and load, presence of PCNT and OCNT in GE composite leads to reduction in creep strain and strain rate. Further, functionalized CNT seems to impart a better creep resistance than that of pristine CNT in the GE composite at all the creep testing temperatures and loads.
引用
收藏
页码:539 / 547
页数:9
相关论文
共 50 条
[1]  
[Anonymous], 2012, Mechanical Properties of Solid Polymers.
[2]   Micromechanical investigation of creep-recovery behavior of carbon nanotube-reinforced polymer nanocomposites [J].
Ansari, R. ;
Hassanzadeh-Aghdarn, M. K. .
INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2016, 115 :45-55
[3]   Micromechanics-based viscoelastic analysis of carbon nanotube-reinforced composites subjected to uniaxial and biaxial loading [J].
Ansari, R. ;
Aghdam, M. K. Hassanzadeh .
COMPOSITES PART B-ENGINEERING, 2016, 90 :512-522
[4]   Characterization of carbon nanotube enhanced interlaminar fracture toughness of woven carbon fiber reinforced polymer composites [J].
Chaudhry, M. S. ;
Czekanski, A. ;
Zhu, Z. H. .
INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2017, 131 :480-489
[5]   Reinforcement of epoxy resins with multi-walled carbon nanotubes for enhancing cryogenic mechanical properties [J].
Chen, Zhen-Kun ;
Yang, Jiao-Ping ;
Ni, Qing-Qing ;
Fu, Shao-Yun ;
Huang, Yong-Gang .
POLYMER, 2009, 50 (19) :4753-4759
[6]   Creep-resistant behavior of MWCNT-polycarbonate melt spun nanocomposite fibers at elevated temperature [J].
Dai, Zhaohe ;
Gao, Yun ;
Liu, Luqi ;
Poetschke, Petra ;
Yang, Jinglei ;
Zhang, Zhong .
POLYMER, 2013, 54 (14) :3723-3729
[7]  
Findley W.N., 1989, Creep and Relaxation of Nonlinear Viscoelastic Materials - with an Introduction to Linear Viscoelasticity, DOI DOI 10.1115/1.3424077
[8]   Molecular simulation of the influence of chemical cross-links on the shear strength of carbon nanotube-polymer interfaces [J].
Frankland, SJV ;
Caglar, A ;
Brenner, DW ;
Griebel, M .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (12) :3046-3048
[9]   Temperature dependence of creep behavior of PP-MWNT nanocomposites [J].
Ganss, Martin ;
Satapathy, Bhabani K. ;
Thunga, Mahendra ;
Weidisch, Roland ;
Poetschke, Petra ;
Janke, Andreas .
MACROMOLECULAR RAPID COMMUNICATIONS, 2007, 28 (16) :1624-1633
[10]   Effect of dispersion conditions on the mechanical properties of multi-walled carbon nanotubes based epoxy resin composites [J].
Garg, Parveen ;
Singh, Bhanu Pratap ;
Kumar, Gaurav ;
Gupta, Tejendra ;
Pandey, Indresh ;
Seth, R. K. ;
Tandon, R. P. ;
Mathur, Rakesh Behari .
JOURNAL OF POLYMER RESEARCH, 2011, 18 (06) :1397-1407