Stable edge dislocations in finite crystals

被引:11
作者
Kumar, Arun [1 ]
Subramaniam, Anandh [1 ]
机构
[1] Indian Inst Technol, Kanpur 208016, Uttar Pradesh, India
关键词
edge dislocation; mechanical stability; finite element method; RESIDUAL-STRESSES; PEIERLS STRESS; FREE-SURFACE; ELEMENT; MODEL; SIZE;
D O I
10.1080/14786435.2012.682176
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Dislocations have been considered as mechanically unstable defects in bulk crystals, ignoring the Peierls oscillations. Eshelby [J. Appl. Phys. 24 (1953) p. 176] had showed that a screw dislocation can be stable in a thin cylinder. In the current work, considering Eshelby's example of an edge dislocation in a single crystalline plate, we show that an edge dislocation can be stable in a finite crystal. Using specific examples, we also show that the position of stability of an edge dislocation can be off-centre. This shift in the stability from the centre marks the transition from a stable dislocation to an unstable one. The above-mentioned tasks are achieved by simulating edge dislocations using the finite element method.
引用
收藏
页码:2947 / 2956
页数:10
相关论文
共 50 条
[41]   Interaction of helium-vacancy clusters with edge dislocations in α-Fe [J].
Yang, L. ;
Zu, X. T. ;
Wang, Z. G. ;
Gao, F. ;
Wang, X. Y. ;
Heinisch, H. L. ;
Kurtz, R. T. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2007, 265 (02) :541-546
[42]   Γ-Convergence Analysis of Systems of Edge Dislocations: the Self Energy Regime [J].
L. De Luca ;
A. Garroni ;
M. Ponsiglione .
Archive for Rational Mechanics and Analysis, 2012, 206 :885-910
[43]   Fractional Nonlocal Elasticity and Solutions for Straight Screw and Edge Dislocations [J].
Y. Povstenko .
Physical Mesomechanics, 2020, 23 :547-555
[44]   Finite element modeling of residual stresses in machining induced by cutting using a tool with finite edge radius [J].
Ee, KC ;
Dillon, OW ;
Jawahir, IS .
INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2005, 47 (10) :1611-1628
[45]   Broken living layers: Dislocations in active smectic liquid crystals [J].
Juelicher, Frank ;
Prost, Jacques ;
Toner, John .
PHYSICAL REVIEW E, 2022, 106 (05)
[46]   Effect of the surface energy state on the dynamics of dislocations in ionic crystals [J].
V. I. Savenko ;
E. D. Shchukin .
Colloid Journal, 2007, 69 :782-785
[47]   Evolution behavior of two edge dislocations passing through an astigmatic lens [J].
Chen, Haitao ;
Gao, Zenghui ;
Yang, Huajun ;
Xiao, Shanghui ;
Wang, Fanhou ;
Huang, Xiaoping ;
Liu, Xueqiong .
JOURNAL OF MODERN OPTICS, 2012, 59 (21) :1863-1872
[48]   Dynamic interactions of helium-vacancy clusters with edge dislocations in α-Fe [J].
Yang, L. ;
Zu, X. T. ;
Gao, F. ;
Peng, S. M. ;
Heinisch, H. L. ;
Long, X. G. ;
Kurtz, R. J. .
PHYSICA B-CONDENSED MATTER, 2010, 405 (07) :1754-1758
[49]   First-principles investigation of the electronic structures of edge dislocations in GaN [J].
Mishra, K. C. ;
Johnson, K. H. ;
Schmidt, P. C. .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2011, 208 (07) :1555-1557
[50]   Asymptotic Behaviour of a Pile-Up of Infinite Walls of Edge Dislocations [J].
M. G. D. Geers ;
R. H. J. Peerlings ;
M. A. Peletier ;
L. Scardia .
Archive for Rational Mechanics and Analysis, 2013, 209 :495-539