Stable edge dislocations in finite crystals

被引:11
作者
Kumar, Arun [1 ]
Subramaniam, Anandh [1 ]
机构
[1] Indian Inst Technol, Kanpur 208016, Uttar Pradesh, India
关键词
edge dislocation; mechanical stability; finite element method; RESIDUAL-STRESSES; PEIERLS STRESS; FREE-SURFACE; ELEMENT; MODEL; SIZE;
D O I
10.1080/14786435.2012.682176
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Dislocations have been considered as mechanically unstable defects in bulk crystals, ignoring the Peierls oscillations. Eshelby [J. Appl. Phys. 24 (1953) p. 176] had showed that a screw dislocation can be stable in a thin cylinder. In the current work, considering Eshelby's example of an edge dislocation in a single crystalline plate, we show that an edge dislocation can be stable in a finite crystal. Using specific examples, we also show that the position of stability of an edge dislocation can be off-centre. This shift in the stability from the centre marks the transition from a stable dislocation to an unstable one. The above-mentioned tasks are achieved by simulating edge dislocations using the finite element method.
引用
收藏
页码:2947 / 2956
页数:10
相关论文
共 50 条
[21]   The effect of impurity atoms on the multiplication of edge dislocations [J].
Vlasov, NM ;
Zaznoba, VA .
TECHNICAL PHYSICS, 2001, 46 (01) :51-54
[22]   Edge dislocations near a cracked sliding interface [J].
Chen, BT ;
Hu, CT ;
Lee, S .
INTERNATIONAL JOURNAL OF FRACTURE, 1998, 91 (02) :131-147
[23]   The effect of impurity atoms on the multiplication of edge dislocations [J].
N. M. Vlasov ;
V. A. Zaznoba .
Technical Physics, 2001, 46 :51-54
[24]   Direct numerical analyses of nanoscale thermal transport near MgO edge dislocations [J].
Sekimoto, Wataru ;
Fujii, Susumu ;
Yoshiya, Masato .
SCRIPTA MATERIALIA, 2021, 202
[25]   Nonsingular Stress Distribution of Edge Dislocations near Zero-Traction Boundary [J].
Shima, Hiroyuki ;
Sumigawa, Takashi ;
Umeno, Yoshitaka .
MATERIALS, 2022, 15 (14)
[26]   The Role of Geometrically Necessary Dislocations in Cantilever Beam Bending Experiments of Single Crystals [J].
Husser, Edgar ;
Bargmann, Swantje .
MATERIALS, 2017, 10 (03)
[27]   XFEM for multiphysics analysis of edge dislocations with nonuniform misfit strain: A novel enrichment implementation [J].
Duhan, Neha ;
Mishra, B. K. ;
Singh, I. V. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 413
[28]   Finite Element Analysis of Discrete Circular Dislocations [J].
Baxevanakis, K. P. ;
Giannakopoulos, A. E. .
CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2010, 60 (02) :181-197
[29]   Moving dislocations in finite plasticity: a topological approach [J].
Hochrainer, Thomas .
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2013, 93 (04) :252-268
[30]   The interaction between edge dislocations and an elliptical blunted crack [J].
Zeng, X. G. ;
Li, J. L. ;
Wang, Q. Y. ;
Chen, H. Y. ;
Xu, S. S. .
TRANSFERABILITY AND APPLICABILITY OF CURRENT MECHANICS APPROACHES, 2009, :195-200