Stable edge dislocations in finite crystals

被引:11
作者
Kumar, Arun [1 ]
Subramaniam, Anandh [1 ]
机构
[1] Indian Inst Technol, Kanpur 208016, Uttar Pradesh, India
关键词
edge dislocation; mechanical stability; finite element method; RESIDUAL-STRESSES; PEIERLS STRESS; FREE-SURFACE; ELEMENT; MODEL; SIZE;
D O I
10.1080/14786435.2012.682176
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Dislocations have been considered as mechanically unstable defects in bulk crystals, ignoring the Peierls oscillations. Eshelby [J. Appl. Phys. 24 (1953) p. 176] had showed that a screw dislocation can be stable in a thin cylinder. In the current work, considering Eshelby's example of an edge dislocation in a single crystalline plate, we show that an edge dislocation can be stable in a finite crystal. Using specific examples, we also show that the position of stability of an edge dislocation can be off-centre. This shift in the stability from the centre marks the transition from a stable dislocation to an unstable one. The above-mentioned tasks are achieved by simulating edge dislocations using the finite element method.
引用
收藏
页码:2947 / 2956
页数:10
相关论文
共 50 条
  • [21] The effect of impurity atoms on the multiplication of edge dislocations
    N. M. Vlasov
    V. A. Zaznoba
    Technical Physics, 2001, 46 : 51 - 54
  • [22] Edge dislocations near a cracked sliding interface
    Chen, BT
    Hu, CT
    Lee, S
    INTERNATIONAL JOURNAL OF FRACTURE, 1998, 91 (02) : 131 - 147
  • [23] Direct numerical analyses of nanoscale thermal transport near MgO edge dislocations
    Sekimoto, Wataru
    Fujii, Susumu
    Yoshiya, Masato
    SCRIPTA MATERIALIA, 2021, 202
  • [24] The effect of impurity atoms on the multiplication of edge dislocations
    Vlasov, NM
    Zaznoba, VA
    TECHNICAL PHYSICS, 2001, 46 (01) : 51 - 54
  • [25] Nonsingular Stress Distribution of Edge Dislocations near Zero-Traction Boundary
    Shima, Hiroyuki
    Sumigawa, Takashi
    Umeno, Yoshitaka
    MATERIALS, 2022, 15 (14)
  • [26] The Role of Geometrically Necessary Dislocations in Cantilever Beam Bending Experiments of Single Crystals
    Husser, Edgar
    Bargmann, Swantje
    MATERIALS, 2017, 10 (03):
  • [27] XFEM for multiphysics analysis of edge dislocations with nonuniform misfit strain: A novel enrichment implementation
    Duhan, Neha
    Mishra, B. K.
    Singh, I. V.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 413
  • [28] Finite Element Analysis of Discrete Circular Dislocations
    Baxevanakis, K. P.
    Giannakopoulos, A. E.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2010, 60 (02): : 181 - 197
  • [29] Moving dislocations in finite plasticity: a topological approach
    Hochrainer, Thomas
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2013, 93 (04): : 252 - 268
  • [30] The interaction between edge dislocations and an elliptical blunted crack
    Zeng, X. G.
    Li, J. L.
    Wang, Q. Y.
    Chen, H. Y.
    Xu, S. S.
    TRANSFERABILITY AND APPLICABILITY OF CURRENT MECHANICS APPROACHES, 2009, : 195 - 200