HLS parameter estimation for multi-input multi-output systems

被引:1
|
作者
Yuan, Ping [1 ]
Ding, Feng [1 ]
Liu, Peter X. [2 ]
机构
[1] Jiangnan Univ, Control Sci & Engn Res Ctr, Wuxi 214122, Peoples R China
[2] Carleton Univ, Dept Syst & Comp Engn, Ottawa, ON K1S 5B6, Canada
来源
2008 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-9 | 2008年
基金
中国国家自然科学基金;
关键词
least squares identification; parameter estimation; convergence properties; hierarchical identification principle; multivariable systems;
D O I
10.1109/ROBOT.2008.4543312
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In order to reduce computational burden of identification methods for multivariable systems, a hierarchical least squares (HLS) algorithm is developed. The basic idea is to use the hierarchical identification principle to decompose the identification model of the multivariable system into several submodels with smaller dimensions and fewer variables, and then to identify the parameter vector of each submodel. The analysis indicates that the parameter estimation error given by the proposed algorithm converges to zero under the persistent excitation. Also, the algorithm has much less computational efforts than the recursive least squares algorithm and is easy to implement on computer. Finally, we test the proposed algorithm by an example.
引用
收藏
页码:857 / +
页数:2
相关论文
共 50 条
  • [1] CONSISTENT PARAMETER-ESTIMATION IN MULTI-INPUT MULTI-OUTPUT DISCRETE-SYSTEMS
    BOHN, EV
    DEBEER, MK
    AUTOMATICA, 1977, 13 (03) : 301 - 305
  • [2] Maximum likelihood stochastic gradient parameter estimation algorithm for multi-input multi-output systems
    Li, Junhong
    Jiang, Ping
    Yang, Yi
    26TH CHINESE CONTROL AND DECISION CONFERENCE (2014 CCDC), 2014, : 602 - 605
  • [3] RECURSIVE IDENTIFICATION OF MULTI-INPUT, MULTI-OUTPUT SYSTEMS
    GAUTHIER, A
    LANDAU, ID
    AUTOMATICA, 1978, 14 (06) : 609 - 614
  • [4] Multi-input, Multi-output Hybrid Energy Systems
    Arent, Douglas J.
    Bragg-Sitton, Shannon M.
    Miller, David C.
    Tarka, Thomas J.
    Engel-Cox, Jill A.
    Boardman, Richard D.
    Balash, Peter C.
    Ruth, Mark F.
    Cox, Jordan
    Garfield, David J.
    JOULE, 2021, 5 (01) : 47 - 58
  • [5] DESIGN OF MULTI-INPUT MULTI-OUTPUT SYSTEMS WITH MINIMUM SENSITIVITY
    LUTZ, WJ
    HAKIMI, SL
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1988, 35 (09): : 1114 - 1122
  • [6] Hierarchical Fuzzy Logic for Multi-Input Multi-Output Systems
    Kamthan, Shashank
    Singh, Harpreet
    IEEE ACCESS, 2020, 8 : 206966 - 206981
  • [8] Online neural identification of multi-input multi-output systems
    Bazaei, A.
    Moallem, M.
    IET CONTROL THEORY AND APPLICATIONS, 2007, 1 (01): : 44 - 50
  • [9] Decoupled Reference Governors for Multi-Input Multi-Output Systems
    Liu, Yudan
    Osorio, Joycer
    Ossareh, Hamid
    2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 1839 - 1846
  • [10] Design of disturbance observers for multi-input multi-output systems
    Shahruz, Shahram M.
    Yi, Jingang
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINERING CONGRESS AND EXPOSITION 2007, VOL 9, PTS A-C: MECHANICAL SYSTEMS AND CONTROL, 2008, : 1967 - 1976