The Euler-Lagrange and Legendre equations for functionals involving distributed-order fractional derivatives

被引:12
作者
Almeida, Ricardo [1 ]
Luisa Morgado, M. [2 ,3 ]
机构
[1] Univ Aveiro, Dept Math, Ctr Res & Dev Math & Applicat CIDMA, P-3810193 Aveiro, Portugal
[2] Univ Tras Os Montes & Alto Douro, Pole CMAT UTAD, Ctr Math, Vila Real, Portugal
[3] Univ Tras Os Montes & Alto Douro, UTAD, Dept Math, Vila Real, Portugal
关键词
Distributed-order fractional derivative; Euler-Lagrange equation; Legendre condition; Numerical methods; DIFFUSION EQUATION; VARIATIONAL CALCULUS; BOUNDED DOMAINS; FORMULATION;
D O I
10.1016/j.amc.2018.03.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we extend some fractional calculus of variations results by considering functionals depending on distributed-order fractional derivatives. Using variational techniques, we deduce optimal necessary conditions of Euler-Lagrange and Legendre type. We also study the case where integral and holonomic constraints are imposed. Finally, a numerical procedure is given to solve some proposed problems. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:394 / 403
页数:10
相关论文
共 50 条
  • [21] Distributed-order time-fractional wave equations
    Broucke, Frederik
    Oparnica, Ljubica
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (01):
  • [22] Generalized Euler-Lagrange equations for fractional variational problems with free boundary conditions
    Yousefi, S. A.
    Dehghan, Mehdi
    Lotfi, A.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (03) : 987 - 995
  • [23] Variational C∞-symmetries and Euler-Lagrange equations
    Muriel, C
    Romero, JL
    Olver, PJ
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 222 (01) : 164 - 184
  • [24] APPLICATIONS OF THE EXTENDED FRACTIONAL EULER-LAGRANGE EQUATIONS MODEL TO FREELY OSCILLATING DYNAMICAL SYSTEMS
    Agila, Adel
    Baleanu, Dumitru
    Eid, Rajeh
    Irfanoglu, Bulent
    ROMANIAN JOURNAL OF PHYSICS, 2016, 61 (3-4): : 350 - 359
  • [25] Invariant Euler-Lagrange equations and the invariant variational bicomplex
    Kogan, IA
    Olver, PJ
    ACTA APPLICANDAE MATHEMATICAE, 2003, 76 (02) : 137 - 193
  • [26] The Euler-Lagrange equations of nabla derivatives for variational approach to optimization problems on time scales
    Bai, Jie
    Zeng, Zhijun
    ADVANCES IN CONTINUOUS AND DISCRETE MODELS, 2024, 2024 (01):
  • [27] On the commutator of C∞-symmetries and the reduction of Euler-Lagrange equations
    Ruiz, A.
    Muriel, C.
    Olver, P. J.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (14)
  • [28] An improved composite collocation method for distributed-order fractional differential equations based on fractional Chelyshkov wavelets
    Rahimkhani, P.
    Ordokhani, Y.
    Lima, P. M.
    APPLIED NUMERICAL MATHEMATICS, 2019, 145 : 1 - 27
  • [29] Multi-dimensional spectral tau methods for distributed-order fractional diffusion equations
    Zaky, Mahmoud A.
    Tenreiro Machado, J.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 79 (02) : 476 - 488
  • [30] AN IMPROVED COLLOCATION TECHNIQUE FOR DISTRIBUTED-ORDER FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS
    Abdelkawy, M. A.
    ROMANIAN REPORTS IN PHYSICS, 2020, 72 (01)